CCPortal
DOI10.18520/cs/v126/i3/360-367
Machine learning algorithms for predicting rainfall in India
Garai, Sandi; Paul, Ranjit Kumar; Yeasin, Md.; Roy, H. S.; Paul, A. K.
发表日期2024
ISSN0011-3891
起始页码126
结束页码3
卷号126期号:3
英文摘要Due to the changing climate and frequent occurrence of extreme events, farmers face significant challenges. Precise rainfall prediction is necessary for proper crop planning. The presence of nonlinearity and chaotic structure in the historical rainfall series distorts the performances of the usual prediction models. In the present study, algorithms based on complete ensemble empirical mode decomposition with adaptive noise combined with stochastic models like autoregressive integrated moving average and generalized autoregressive conditional heteroscedasticity; machine learning techniques like random forest, artificial neural network, support vector regression and kernel ridge regression (KRR) have been proposed for predicting rainfall series. KRR has been considered to combine predicted intrinsic mode functions and residuals generated by various algorithms to capture the volatility in the series. The proposed algorithms have been applied for predicting rainfall in three selected subdivisions of India, namely, Assam and Meghalaya, Konkan and Goa, and Punjab. An empirical comparison of the proposed algorithms with the existing models revealed that the developed models have outperformed the latter.
英文关键词Climate change; crop planning; empirical comparison; machine learning; prediction; rainfall
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001195542400004
来源期刊CURRENT SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/292705
作者单位Indian Council of Agricultural Research (ICAR); ICAR - Indian Agricultural Research Institute; Indian Council of Agricultural Research (ICAR); ICAR - Indian Institute of Agricultural Biotechnology; Indian Council of Agricultural Research (ICAR); ICAR - Indian Agricultural Statistics Research Institute
推荐引用方式
GB/T 7714
Garai, Sandi,Paul, Ranjit Kumar,Yeasin, Md.,et al. Machine learning algorithms for predicting rainfall in India[J],2024,126(3).
APA Garai, Sandi,Paul, Ranjit Kumar,Yeasin, Md.,Roy, H. S.,&Paul, A. K..(2024).Machine learning algorithms for predicting rainfall in India.CURRENT SCIENCE,126(3).
MLA Garai, Sandi,et al."Machine learning algorithms for predicting rainfall in India".CURRENT SCIENCE 126.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Garai, Sandi]的文章
[Paul, Ranjit Kumar]的文章
[Yeasin, Md.]的文章
百度学术
百度学术中相似的文章
[Garai, Sandi]的文章
[Paul, Ranjit Kumar]的文章
[Yeasin, Md.]的文章
必应学术
必应学术中相似的文章
[Garai, Sandi]的文章
[Paul, Ranjit Kumar]的文章
[Yeasin, Md.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。