Climate Change Data Portal
DOI | 10.1016/j.gloplacha.2024.104390 |
Quantitative Holocene climate reconstruction and anthropogenic impact analysis based on the pollen records in peat sediment in Southern China | |
Zhao, Lin; Zeng, Yaoyao; Rao, Zhiguo; Huang, Chao; Li, Yunxia; Liu, Lidan; Ma, Chunmei | |
发表日期 | 2024 |
ISSN | 0921-8181 |
EISSN | 1872-6364 |
起始页码 | 234 |
卷号 | 234 |
英文摘要 | The quantitative reconstruction of Holocene paleoclimate is pivotal for unraveling the evolution of East Asian Monsoon (EAM). Some recent studies have highlighted the escalating human activities in the late Holocene, which could potentially pose significant challenges to the precise quantitative reconstruction of paleoclimate. In this study, we undertake a quantitative reconstruction of Holocene climate and human influence index (HII) based on pollen data from the Shiwangutian (SWGT) in Southern China. This is achieved by developing and applying a pollen-based calibration model utilizing Locally Weighted Average-Partial Least Squares Regression (LWWA-PLS) and the Modern Analogue Technique (MAT). Our findings reveal that evergreen forests experienced expansion between 11.6 and 9.0 cal ka BP, coinciding with elevated Mean Annual Precipitation (Map) and Mean Annual Temperature (Mat) levels. These patterns signify a progressively warm and wet climate during this period. Subsequently, evergreen forests achieved their maximum abundance between 9.0 and 4.0 cal ka BP, aligning with a notable increase in vegetation richness, indicating a warmer and wetter climate during the midHolocene. Notably, during the interval of 6.0-4.0 cal ka BP, the Map, Mat, and Precipitation of Warmest Month (Mpwa) reached the Holocene optimum, approximately 14% higher than modern. Consequently, we deduce that in the early and middle Holocene, when the monsoon was particularly strong, synchronous changes in precipitation fostered the regional expansion of evergreen broad-leaved forests. Furthermore, the record demonstrates a substantial reduction in forest cover and a noteworthy increase in the HII value since 4.0 cal ka BP, likely attributable to anthropogenic impacts. Our analysis suggests that the influence of anthropogenic activities surpassed that of natural climate factors in shaping regional vegetation cover. These findings offer insights into potential drivers of climate change. As a preliminary conclusion, we propose that the summer insolation, ice sheets, and meltwater fluxes were the primary controlling factors for climate variations during the early to midHolocene in Southern China. |
英文关键词 | Pollen analysis; Quantitative reconstruction; Climate change; Anthropogenic impacts; HII; Dongting Lake Watershed |
语种 | 英语 |
WOS研究方向 | Physical Geography ; Geology |
WOS类目 | Geography, Physical ; Geosciences, Multidisciplinary |
WOS记录号 | WOS:001195413800001 |
来源期刊 | GLOBAL AND PLANETARY CHANGE |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/291094 |
作者单位 | Hunan Normal University; Hunan Normal University; Guangdong Ocean University; Nanjing University |
推荐引用方式 GB/T 7714 | Zhao, Lin,Zeng, Yaoyao,Rao, Zhiguo,et al. Quantitative Holocene climate reconstruction and anthropogenic impact analysis based on the pollen records in peat sediment in Southern China[J],2024,234. |
APA | Zhao, Lin.,Zeng, Yaoyao.,Rao, Zhiguo.,Huang, Chao.,Li, Yunxia.,...&Ma, Chunmei.(2024).Quantitative Holocene climate reconstruction and anthropogenic impact analysis based on the pollen records in peat sediment in Southern China.GLOBAL AND PLANETARY CHANGE,234. |
MLA | Zhao, Lin,et al."Quantitative Holocene climate reconstruction and anthropogenic impact analysis based on the pollen records in peat sediment in Southern China".GLOBAL AND PLANETARY CHANGE 234(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。