Climate Change Data Portal
DOI | 10.1175/JCLI-D-23-0312.1 |
What Aspect of Model Performance is the Most Relevant to Skillful Future Projection on a Regional Scale? | |
Li, Tong; Zhang, Xuebin; Jiang, Zhihong | |
发表日期 | 2024 |
ISSN | 0894-8755 |
EISSN | 1520-0442 |
起始页码 | 37 |
结束页码 | 5 |
卷号 | 37期号:5 |
英文摘要 | Weighting models according to their performance has been used to produce multimodel climate change projections. But the added value of model weighting for future projection is not always examined. Here we apply an imperfect model framework to evaluate the added value of model weighting in projecting summer temperature changes over China. Members of large-ensemble simulations by three climate models of different climate sensitivities are used as pseudo -observations for the past and the future. Performance of the models participating in the phase 6 of the Coupled Model Intercomparison Project (CMIP6) are evaluated against the pseudo-observations based on simulated historical climatology and trends in global, regional, and local temperatures to determine the model weights for future projection. The weighted projections are then compared with the pseudo-observations in the future period. We find that regional trend as a metric of model performance yields generally better skill for future projection, while past climatology as performance metric does not lead to a significant improvement to projection. Trend at the grid-box scale is also not a good performance indicator as small-scale trend is highly uncertain. For the model weighting to be effective, the metric for evaluating the model's performance must be relatable to future changes, with the response signal separable from internal variability. Projected summer warming based on model weighting is similar to that of unweighted projection but the 5th-95th-percentile uncertainty range of the weighted projection is 38% smaller with the reduction mainly in the upper bound, with the largest reduction appearing in southeast China. |
英文关键词 | KEYWORDS: Climate change; Uncertainty; Ensembles; Climate models; Trends |
语种 | 英语 |
WOS研究方向 | Meteorology & Atmospheric Sciences |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:001157521700001 |
来源期刊 | JOURNAL OF CLIMATE
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/289676 |
作者单位 | Nanjing University of Information Science & Technology; Nanjing University of Information Science & Technology; University of Victoria |
推荐引用方式 GB/T 7714 | Li, Tong,Zhang, Xuebin,Jiang, Zhihong. What Aspect of Model Performance is the Most Relevant to Skillful Future Projection on a Regional Scale?[J],2024,37(5). |
APA | Li, Tong,Zhang, Xuebin,&Jiang, Zhihong.(2024).What Aspect of Model Performance is the Most Relevant to Skillful Future Projection on a Regional Scale?.JOURNAL OF CLIMATE,37(5). |
MLA | Li, Tong,et al."What Aspect of Model Performance is the Most Relevant to Skillful Future Projection on a Regional Scale?".JOURNAL OF CLIMATE 37.5(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。