CCPortal
DOI10.1109/ACCESS.2024.3379142
Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning
Perera, Amal S.; Witharana, Chandi; Manos, Elias; Liljedahl, Anna K.
发表日期2024
ISSN2169-3536
起始页码12
卷号12
英文摘要Climate change pressure on the Arctic permafrost is rising alarmingly, creating a decisive need to produce Pan-Arctic scale permafrost landform and thaw disturbance information from remote sensing (RS) data. Very high spatial resolution (VHSR) satellite images can be utilized to detect ice-wedge polygons (IWPs)- the most important and widespread landform in the Arctic tundra region - across the Arctic without compromising spatial details. Automated analysis of peta-byte scale VHSR imagery covering millions of square kilometers is a computationally challenging task. Traditional semantic segmentation requires the use of task specific feature extraction with conventional classification techniques. Semantic complexity of VHSR images coupled with landscape heterogeneity makes it difficult to use conventional classification approaches to produce Pan-Arctic scale geospatial products. This leads to adapting deep convolutional neural network (DLCNN) approaches that have excelled in computer vision (CV) applications. Transitioning domains from everyday image understanding to remote sensing image analysis is challenging. This study aims to systematically investigate two main obstacles confronted when adapting DLCNNs in large-scale RS image analysis tasks; 1) the limited availability labeled data sets and 2) the prohibitive nature of hyperparameter tunning when designing DLCNNs that can capture the rich characteristics embedded in remotely-sensed images. With a case study on the production of the first pan-Arctic ice-wedge polygon map using thousands of VHSR images, we demonstrate the use of transfer learning and the impact of hyperparameter tuning with a 16% improvement of the Mean Average Precision (mAP50).
英文关键词Remote sensing; deep learning; hyperparameter optimization; terrain mapping; convolutional neural networks; climate change; environmental monitoring; Arctic tundra; mask R-CNN
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001192235000001
来源期刊IEEE ACCESS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/289223
作者单位University of Connecticut
推荐引用方式
GB/T 7714
Perera, Amal S.,Witharana, Chandi,Manos, Elias,et al. Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning[J],2024,12.
APA Perera, Amal S.,Witharana, Chandi,Manos, Elias,&Liljedahl, Anna K..(2024).Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning.IEEE ACCESS,12.
MLA Perera, Amal S.,et al."Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning".IEEE ACCESS 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Perera, Amal S.]的文章
[Witharana, Chandi]的文章
[Manos, Elias]的文章
百度学术
百度学术中相似的文章
[Perera, Amal S.]的文章
[Witharana, Chandi]的文章
[Manos, Elias]的文章
必应学术
必应学术中相似的文章
[Perera, Amal S.]的文章
[Witharana, Chandi]的文章
[Manos, Elias]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。