CCPortal
DOI10.1029/2023WR035913
Spatial-Temporal Differentiation of Supra- and Sub-Permafrost Groundwater Contributions to River Runoff in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions
发表日期2024
ISSN0043-1397
EISSN1944-7973
起始页码60
结束页码3
卷号60期号:3
英文摘要Supra- and sub-permafrost groundwater are the two main components of groundwater in permafrost regions. However, due to the lack of groundwater observational data, the spatial-temporal differentiation of these groundwater components in permafrost basins remains unclear. Based on flow data from 17 hydrological stations in five permafrost rivers within the Eurasian Arctic and Qinghai-Tibet Plateau permafrost regions, this study tries to determine the proportion of supra- and sub-permafrost groundwater through the corresponding relationship between baseflow separation and baseflow index. The results showed that the annual average contribution of supra- and sub-permafrost groundwater in river runoff to total streamflow in the Yangtze River source basin was 36.81% and 14.56%, respectively. Correspondingly, the Yellow River source basin was 36.58% and 24.46%, the Ob River basin was 37.05% and 26.83%, the Yenisei River basin was 28.80% and 36.56%, and the Lena River basin was 39.13% and 9.54%. Over the past 50-80 years, the ratio of sub-permafrost groundwater discharge to river runoff and the flux of sub-permafrost groundwater have shown an increasing trend in all study basins, which was significantly affected by air temperature and permafrost area. Relative contribution of supra-permafrost groundwater exhibits a significant positive correlation with precipitation and permafrost area. Air temperature has both positive and negative effects on supra-permafrost groundwater discharge, leading to a rising or falling trend of supra-permafrost groundwater discharge. In the future, it is necessary to further explore the complex effects of groundwater discharge variations on streamflow in permafrost regions under climate warming.
英文关键词permafrost; groundwater components; supra-permafrost groundwater; sub-permafrost groundwater; ungauged basins
语种英语
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources
WOS类目Environmental Sciences ; Limnology ; Water Resources
WOS记录号WOS:001185717900001
来源期刊WATER RESOURCES RESEARCH
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/289080
作者单位Chinese Academy of Sciences; Institute of Mountain Hazards & Environment, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Sichuan University
推荐引用方式
GB/T 7714
. Spatial-Temporal Differentiation of Supra- and Sub-Permafrost Groundwater Contributions to River Runoff in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions[J],2024,60(3).
APA (2024).Spatial-Temporal Differentiation of Supra- and Sub-Permafrost Groundwater Contributions to River Runoff in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions.WATER RESOURCES RESEARCH,60(3).
MLA "Spatial-Temporal Differentiation of Supra- and Sub-Permafrost Groundwater Contributions to River Runoff in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions".WATER RESOURCES RESEARCH 60.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。