CCPortal
DOI10.1016/j.oceaneng.2023.116651
TemproNet: A transformer-based deep learning model for seawater temperature prediction
Chen, Qiaochuan; Cai, Candong; Chen, Yaoran; Zhou, Xi; Zhang, Dan; Peng, Yan
发表日期2024
ISSN0029-8018
EISSN1873-5258
起始页码293
卷号293
英文摘要Accurate prediction of seawater temperature is crucial for meteorological model understanding and climate change assessment. This study proposes TempreNet, a deep learning model based on a transformer and convolutional neural network, to accurately predict subsurface seawater temperature using satellite observations in the South China Sea. TemproNet uses multivariate sea surface observations such as sea level anomaly (SLA), sea surface temperature (SST), and sea surface wind (SSW) as model inputs, which employs a hierarchical transformer encoder to extract the multi -scale feature, uses a lightweight convolutional decoder to predict seawater temperature. We train and validate the model using the CMEMS temperature dataset and compare its accuracy with Attention-Unet, LightGMB, and ANN. Experimental results show that TemproNet has significantly outperformed other models with RMSE and R2 of 0.52 degrees C and 0.83 in a 32 -layer temperature profile prediction task over 200 m in the South China Sea. In addition, we fully demonstrate the error of our model in space, in time, and at different depths, showing the efficiency and stability of our model. The input sensitivity analysis showed that SST contributed more to predicting shallow water temperature, while SLA significantly impacted the prediction of mid -deep water temperature. The results of this study provide an innovative and reliable solution for seawater temperature prediction and have important implications for meteorological model understanding and climate change assessment.
英文关键词Transformer; Satellite observation; Deep learning; Seawater temperature
语种英语
WOS研究方向Engineering ; Oceanography
WOS类目Engineering, Marine ; Engineering, Civil ; Engineering, Ocean ; Oceanography
WOS记录号WOS:001171982100001
来源期刊OCEAN ENGINEERING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/288366
作者单位Shanghai University; Shanghai University
推荐引用方式
GB/T 7714
Chen, Qiaochuan,Cai, Candong,Chen, Yaoran,et al. TemproNet: A transformer-based deep learning model for seawater temperature prediction[J],2024,293.
APA Chen, Qiaochuan,Cai, Candong,Chen, Yaoran,Zhou, Xi,Zhang, Dan,&Peng, Yan.(2024).TemproNet: A transformer-based deep learning model for seawater temperature prediction.OCEAN ENGINEERING,293.
MLA Chen, Qiaochuan,et al."TemproNet: A transformer-based deep learning model for seawater temperature prediction".OCEAN ENGINEERING 293(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Qiaochuan]的文章
[Cai, Candong]的文章
[Chen, Yaoran]的文章
百度学术
百度学术中相似的文章
[Chen, Qiaochuan]的文章
[Cai, Candong]的文章
[Chen, Yaoran]的文章
必应学术
必应学术中相似的文章
[Chen, Qiaochuan]的文章
[Cai, Candong]的文章
[Chen, Yaoran]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。