CCPortal
DOI10.1029/2023EF004312
Global Projection of Flood Risk With a Bivariate Framework Under 1.5-3.0°C Warming Levels
发表日期2024
EISSN2328-4277
起始页码12
结束页码4
卷号12期号:4
英文摘要Global warming increases the atmospheric water-holding capacity, consequently altering the frequency, and intensity of extreme hydrological events. River floods characterized by large peak flow or prolonged duration can amplify the risk of social disruption and affect ecosystem stability. However, previous studies have mostly focused on univariate flood magnitude characteristics, such as flood peak or volume, and there is still limited understanding of how these joint flood characteristics (i.e., magnitude and duration) might co-evolve under different warming levels. Here, we develop a systematical bivariate framework to project future flood risk in 11,528 catchments across the globe. By constructing the joint distribution of flood peak and duration with copulas, we examine global flood risk with a bivariate framework under varying levels of global warming (i.e., within a range of 1.5-3.0 degrees C above pre-industrial levels). The flood projections are produced by driving five calibrated lumped hydrological models (HMs) using the simulations with bias adjustment of five global climate models (GCMs) under three shared socioeconomic pathways (SSP126, SSP370, and SSP585). On average, global warming from 1.5 to 3.0 degrees C tends to amplify flood peak and lengthen flood duration across almost all continents, but changes are not unidirectional and vary regionally around the globe. The joint return period (JRP) of the historical (1985-2014) 50-year flood event is projected to decrease to a median with 36 years under a medium emission pathway at the 1.5 degrees C warming level. Finally, we evaluate the drivers of these JRP changes in the future climate and quantify the uncertainty arising from the different GCMs, SSPs, and HMs. Our findings highlight the importance of limiting greenhouse gas emission to slow down global warming and developing climate adaptation strategies to address future flood hazards. Floods with large peak flow or prolonged duration can have considerable impacts on infrastructure and ecosystems, and may become more severe in a warmer planet. However, due to the complex interplay between the climate system and hydrological processes, our understanding of future flood risk remains limited. We use copula-based approach to establish the joint distribution of flood peak and duration to examine future flood risk under varying levels of global warming. The results show that most catchments across the globe are likely to experience heightened flood risk in response to climate change, with an amplification effect on flood risk as temperature increases from 1.5 to 3.0 degrees C. Our findings emphasize the urgency of limiting greenhouse gas emission to adapt to future flood hazards under global climate change. We project future daily streamflow by a cascade model chain in 11,528 catchments across the globe We evaluate shifts in future global flood risk with a copula-based framework under different warming levels Global warming from 1.5 to 3.0 degrees C has a significant impact on flood intensification, with an amplification effect on flood peak and duration
英文关键词flood; hydrological projection; climate change; bivariate analysis
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001195888400001
来源期刊EARTHS FUTURE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/287820
作者单位Wuhan University; University of Oxford
推荐引用方式
GB/T 7714
. Global Projection of Flood Risk With a Bivariate Framework Under 1.5-3.0°C Warming Levels[J],2024,12(4).
APA (2024).Global Projection of Flood Risk With a Bivariate Framework Under 1.5-3.0°C Warming Levels.EARTHS FUTURE,12(4).
MLA "Global Projection of Flood Risk With a Bivariate Framework Under 1.5-3.0°C Warming Levels".EARTHS FUTURE 12.4(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。