Climate Change Data Portal
DOI | 10.3390/rs16071204 |
Modelling Floodplain Vegetation Response to Climate Change, Using the Soil and Water Assessment Tool (SWAT) Model Simulated LAI, Applying Different GCM's Future Climate Data and MODIS LAI Data | |
Muhury, Newton; Apan, Armando; Maraseni, Tek | |
发表日期 | 2024 |
EISSN | 2072-4292 |
起始页码 | 16 |
结束页码 | 7 |
卷号 | 16期号:7 |
英文摘要 | Scientists widely agree that anthropogenically driven climate change significantly impacts vegetation growth, particularly in floodplain areas, by altering river flow and flood regimes. This impact will accelerate in the future, according to climate change projections. For example, in Australia, climate change has been attributed to a decrease in winter precipitation in the range of 56% to 72.9% and an increase in summer from 11% to 27%, according to different climate scenarios. This research attempts to understand vegetation responses to climate change variability at the floodplain level. Further, this study is an effort to enlighten our understanding of temporal climate change impacts under different climate scenarios. To achieve these aims, a semi-distributed hydrological model was applied at a sub-catchment level to simulate the Leaf Area Index (LAI). The model was simulated against future time series of climate data according to Global Climate Model (GCM) projections. The time series data underwent a non-parametric Mann-Kendall test to detect trends and assess the magnitude of change. To quantify the model's performance, calibration and validation were conducted against the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI. The calibration and validation results show Nash-Sutcliffe efficiency (NSE) values of 0.85 and 0.78, respectively, suggesting the model's performance is very good. The modeling results reveal that the rainfall pattern fluctuates under climate projections within the study site, in which vegetation tends to be more vibrant during the warmer seasons. Moreover, the modeling results highlighted increases in the average projected future winter temperatures, which can help vegetation growth during winter. The results of this study may be employed for sustainable floodplain management, restoration, land-use planning, and policymaking, and help floodplain communities better prepare for and respond to changing flood patterns and related challenges under a future changing climate. |
英文关键词 | SWAT; LAI; MODIS; climate change; climate model |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001200975400001 |
来源期刊 | REMOTE SENSING
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/286488 |
作者单位 | University of Southern Queensland; University of Southern Queensland; University of the Philippines System; University of the Philippines Diliman |
推荐引用方式 GB/T 7714 | Muhury, Newton,Apan, Armando,Maraseni, Tek. Modelling Floodplain Vegetation Response to Climate Change, Using the Soil and Water Assessment Tool (SWAT) Model Simulated LAI, Applying Different GCM's Future Climate Data and MODIS LAI Data[J],2024,16(7). |
APA | Muhury, Newton,Apan, Armando,&Maraseni, Tek.(2024).Modelling Floodplain Vegetation Response to Climate Change, Using the Soil and Water Assessment Tool (SWAT) Model Simulated LAI, Applying Different GCM's Future Climate Data and MODIS LAI Data.REMOTE SENSING,16(7). |
MLA | Muhury, Newton,et al."Modelling Floodplain Vegetation Response to Climate Change, Using the Soil and Water Assessment Tool (SWAT) Model Simulated LAI, Applying Different GCM's Future Climate Data and MODIS LAI Data".REMOTE SENSING 16.7(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。