Climate Change Data Portal
DOI | 10.3390/rs16010201 |
Elevation-Dependent Contribution of the Response and Sensitivity of Vegetation Greenness to Hydrothermal Conditions on the Grasslands of Tibet Plateau from 2000 to 2021 | |
Wu, Yatang; Shao, Changliang; Zhang, Jing; Liu, Yiliang; Li, Han; Ma, Leichao; Li, Ming; Shen, Beibei; Hou, Lulu; Chen, Shiyang; Xu, Dawei; Xin, Xiaoping; Liu, Xiaoni | |
发表日期 | 2024 |
EISSN | 2072-4292 |
卷号 | 16期号:1 |
英文摘要 | The interrelation between grassland vegetation greenness and hydrothermal conditions on the Tibetan Plateau demonstrates a significant correlation. However, understanding the spatial patterns and the degree of this correlation, especially in relation to minimum and maximum air temperatures across various vertical gradient zones of the Plateau, necessitates further examination. Utilizing the normalized difference phenology index (NDPI) and considering four distinct hydrothermal conditions (minimum, maximum, mean temperature, and precipitation) during the growing season, an analysis was conducted on the correlation of NDPI with hydrothermal conditions across plateau elevations from 2000 to 2021. Results indicate that the correlation between vegetation greenness and hydrothermal conditions on the Tibetan Plateau grasslands is spatially varied. There is a pronounced negative correlation of greenness to maximum temperature and precipitation in the northeastern plateau, while areas exhibit stronger positive correlations to mean temperature. Additionally, as elevation increases, the positive correlation and sensitivity of alpine grassland vegetation greenness to minimum temperature significantly intensify, contrary to the effects observed with maximum temperature. The correlations between greenness and mean temperature in relation to elevational changes primarily exhibit a unimodal pattern across the Tibetan Plateau. These findings emphasize that the correlation and sensitivity of grassland vegetation greenness to hydrothermal conditions are both elevation-dependent and spatially distinct. |
关键词 | alpine grasslandelevationgreennessclimate change |
英文关键词 | TEMPERATURE; CHINA; DYNAMICS; CARBON; PRECIPITATION; STORAGE; CLIMATE; COVER |
WOS研究方向 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001141329100001 |
来源期刊 | REMOTE SENSING |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/283549 |
作者单位 | Gansu Agricultural University; Chinese Academy of Agricultural Sciences; Institute of Agricultural Resources & Regional Planning, CAAS; China Geological Survey |
推荐引用方式 GB/T 7714 | Wu, Yatang,Shao, Changliang,Zhang, Jing,et al. Elevation-Dependent Contribution of the Response and Sensitivity of Vegetation Greenness to Hydrothermal Conditions on the Grasslands of Tibet Plateau from 2000 to 2021[J],2024,16(1). |
APA | Wu, Yatang.,Shao, Changliang.,Zhang, Jing.,Liu, Yiliang.,Li, Han.,...&Liu, Xiaoni.(2024).Elevation-Dependent Contribution of the Response and Sensitivity of Vegetation Greenness to Hydrothermal Conditions on the Grasslands of Tibet Plateau from 2000 to 2021.REMOTE SENSING,16(1). |
MLA | Wu, Yatang,et al."Elevation-Dependent Contribution of the Response and Sensitivity of Vegetation Greenness to Hydrothermal Conditions on the Grasslands of Tibet Plateau from 2000 to 2021".REMOTE SENSING 16.1(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。