CCPortal
DOI10.1016/j.gexplo.2023.107326
Auto encoder generative adversarial networks - based mineral prospectivity mapping in Lhasa area, Tibet
Xie, Miao; Liu, Bingli; Wang, Lu; Li, Cheng; Kong, Yunhui; Tang, Rui
发表日期2023
ISSN0375-6742
EISSN1879-1689
卷号255
英文摘要When conducting Mineral Potential Mapping (MPM) using multiple sources of data such as geology, geochem-istry, and geophysics, it often encounters the challenges of complex and diverse data distributions within these datasets. Enhancing the capability to extract nonlinear data features and further uncover metallogenic infor-mation is a crucial research objective. This study utilizes the C-A multifractal approach to extract anomalous information related to metallogenic elements, employs compositional data analysis methods for quantitatively extracting geochemical associations of mineralization, and utilizes GIS spatial analysis techniques to quantita-tively extract predictive indicators from various data sources, including geology, geophysics, and remote sensing, to construct an MPM prediction dataset. Building upon the foundation of AutoEncoder (AE), this study introduces a discriminator and employs the AEGAN (Auto Encoder Generative Adversarial Network) algorithm, which combines AutoEncoder and Generative Adversarial Network (GAN), for metallogenic prospectivity prediction in the Lhasa region. Compared to AE algorithms, AEGAN combines the strengths of AE and GAN, significantly improving the model's ability to reconstruct input data through the interaction between the generator and discriminator. Additionally, this study designs comparative experiments with AE, and the results demonstrate that the AEGAN model can more accurately identify the correlation between high anomaly areas and poly -metallic deposits, providing a more precise delineation of anomalous extents. The Area Under the Receiver Operating Characteristic Curve (AUC) further validates the superior performance of the AEGAN model. These findings indicate that the AEGAN model exhibits outstanding capabilities in learning the internal connections and features among multiple data sources, holding significant potential for practical applications in mineral exploration.
关键词C -A fractalCompositional data analysisDeep learningMineral prospectivity mapping
英文关键词BIG DATA ANALYTICS; GEOCHEMICAL ANOMALIES; REGION; ZN; PB; RECOGNITION; DISTRICT; BELT
WOS研究方向Geochemistry & Geophysics
WOS记录号WOS:001097376900001
来源期刊JOURNAL OF GEOCHEMICAL EXPLORATION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/283414
作者单位Chengdu University of Technology; Peking University; China Geological Survey; Chinese Academy of Geological Sciences
推荐引用方式
GB/T 7714
Xie, Miao,Liu, Bingli,Wang, Lu,et al. Auto encoder generative adversarial networks - based mineral prospectivity mapping in Lhasa area, Tibet[J],2023,255.
APA Xie, Miao,Liu, Bingli,Wang, Lu,Li, Cheng,Kong, Yunhui,&Tang, Rui.(2023).Auto encoder generative adversarial networks - based mineral prospectivity mapping in Lhasa area, Tibet.JOURNAL OF GEOCHEMICAL EXPLORATION,255.
MLA Xie, Miao,et al."Auto encoder generative adversarial networks - based mineral prospectivity mapping in Lhasa area, Tibet".JOURNAL OF GEOCHEMICAL EXPLORATION 255(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Miao]的文章
[Liu, Bingli]的文章
[Wang, Lu]的文章
百度学术
百度学术中相似的文章
[Xie, Miao]的文章
[Liu, Bingli]的文章
[Wang, Lu]的文章
必应学术
必应学术中相似的文章
[Xie, Miao]的文章
[Liu, Bingli]的文章
[Wang, Lu]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。