CCPortal
DOI10.3390/ijgi12070281
Evaluation of SMAP-Enhanced Products Using Upscaled Soil Moisture Data Based on Random Forest Regression: A Case Study of the Qinghai-Tibet Plateau, China
Chen, Jia; Hu, Fengmin; Li, Junjie; Xie, Yijia; Zhang, Wen; Huang, Changqing; Meng, Lingkui
发表日期2023
EISSN2220-9964
卷号12期号:7
英文摘要The evaluation of satellite soil moisture is a big challenge owing to the large spatial mismatch between pixel-based satellite soil moisture products and point-based in situ measurements. Upscaling in situ measurements to obtain the true value of soil moisture content at the satellite grid/footprint scale can make up for the scale difference and improve the validation. Many existing upscaling methods have strict requirements regarding the spatial distribution and quantity of soil moisture sensors. However, in reality, soil-moisture-monitoring networks are commonly sparse with low sensor density, which increases the difficulty of obtaining accurate upscaled soil moisture data and limits the validation of satellite products. For this reason, this paper proposes a scheme to upscale in situ measurements using five machine learning methods along with Landsat 8 datasets and DEM data to validate the accuracy of a SMAP-enhanced passive soil moisture product for a sparse network on the Qinghai-Tibet Plateau. The proposed scheme realizes the upscaling of in situ soil moisture data to the pixel scale (30 m x 30 m) and then to the coarse grid scale (9 km x 9 km) by using multi-source remote sensing data as the bridge of scale conversion. The long-time SMAP SM products since April 2015 on the Qinghai-Tibet Plateau were validated based on upscaled soil moisture data. The results show that (1) random forest regression performs the best, and the upscaled soil moisture data reflect the region-average soil moisture conditions that can be used for evaluating SMAP data; (2) the SMAP product meets its scientific measurement requirements; and (3) the SMAP product generally underestimates the soil moisture in the study area.
关键词soil moistureSMAPevaluationsparse ground-based sitesupscalingrandom forest regression
英文关键词RETRIEVALS; SATELLITE; VALIDATION; NETWORKS; SMOS
WOS研究方向Computer Science, Information Systems ; Geography, Physical ; Remote Sensing
WOS记录号WOS:001035961900001
来源期刊ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/283190
作者单位Wuhan University; North China University of Water Resources & Electric Power
推荐引用方式
GB/T 7714
Chen, Jia,Hu, Fengmin,Li, Junjie,et al. Evaluation of SMAP-Enhanced Products Using Upscaled Soil Moisture Data Based on Random Forest Regression: A Case Study of the Qinghai-Tibet Plateau, China[J],2023,12(7).
APA Chen, Jia.,Hu, Fengmin.,Li, Junjie.,Xie, Yijia.,Zhang, Wen.,...&Meng, Lingkui.(2023).Evaluation of SMAP-Enhanced Products Using Upscaled Soil Moisture Data Based on Random Forest Regression: A Case Study of the Qinghai-Tibet Plateau, China.ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,12(7).
MLA Chen, Jia,et al."Evaluation of SMAP-Enhanced Products Using Upscaled Soil Moisture Data Based on Random Forest Regression: A Case Study of the Qinghai-Tibet Plateau, China".ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 12.7(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Jia]的文章
[Hu, Fengmin]的文章
[Li, Junjie]的文章
百度学术
百度学术中相似的文章
[Chen, Jia]的文章
[Hu, Fengmin]的文章
[Li, Junjie]的文章
必应学术
必应学术中相似的文章
[Chen, Jia]的文章
[Hu, Fengmin]的文章
[Li, Junjie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。