Climate Change Data Portal
DOI | 10.1002/ldr.4631 |
Quantifying the effect of a retrogressive thaw slump on soil freeze-thaw erosion in permafrost regions on the Qinghai-Tibet Plateau, China | |
Jiao, Chenglong; Wang, Yizhao; Shan, Yi; He, Peifeng; He, Junlin | |
发表日期 | 2023 |
ISSN | 1085-3278 |
EISSN | 1099-145X |
起始页码 | 2573 |
结束页码 | 2588 |
卷号 | 34期号:9 |
英文摘要 | Thermokarst terrain is developing at an accelerating pace in the ice-rich permafrost on the Qinghai-Tibet Plateau (QTP), China, and the most dramatic of these terrain-altering thermokarsts is retrogressive thaw slump (RTS). The freeze-thaw erosion (FTE) impacts are sharply increasing on the Plateau due to RTS, especially as a result of the migration of fine sediments in cold climates, these impacts are still not quantified due to the limitation of hydro-thermal-mass transport laws in RTS development. Moreover, it is difficult to assess the impact of RTS on the ecology and environment, especially on soil erosion. This study developed a heat-water-mass transport coupled model of a RTS in the Beiluhe River Region on the QTP, considering the actual topography, water-ice phase change, latent heat, and surface heat exchange layer. Based on the observed data of ground temperature, unfrozen water content, and heat flux, the coupled model herein is practicable for presenting the geotemperature regime and groundwater flow in the RTS area, thereby quantifying the ice-rich permafrost thaw and mass wasting. The results presented indicate that: (1) the seepage velocity of the superficial zone (0-1.5 m depth) is two orders of magnitude higher than that of the permafrost table; (2) the mean ice-rich permafrost thaw volume was 13.4 m(2) from 2016 to 2021; and (3) the cumulative mass transport volume was 22 m(2) from July 2020 to September 2021. In addition, the relation between the FTE (shown as the migration of sediments) and the amount of ground ice ablation can be fitted by an exponential equation. This work proposes a reliable method for quantifying the effect of FTE and is helpful to assess the eco-environmental impacts of RTS. |
关键词 | freeze-thaw erosionice-rich permafrostmass wastingQinghai-Tibet Plateauretrogressive thaw slumpthermokarst |
英文关键词 | SHORT-TERM ABLATION; GROUND ICE; ACTIVE LAYER; SEDIMENT; HEAT |
WOS研究方向 | Environmental Sciences ; Soil Science |
WOS记录号 | WOS:000950255200001 |
来源期刊 | LAND DEGRADATION & DEVELOPMENT |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/282981 |
作者单位 | South China University of Technology; South China University of Technology; Guangzhou University; South China University of Technology |
推荐引用方式 GB/T 7714 | Jiao, Chenglong,Wang, Yizhao,Shan, Yi,et al. Quantifying the effect of a retrogressive thaw slump on soil freeze-thaw erosion in permafrost regions on the Qinghai-Tibet Plateau, China[J],2023,34(9). |
APA | Jiao, Chenglong,Wang, Yizhao,Shan, Yi,He, Peifeng,&He, Junlin.(2023).Quantifying the effect of a retrogressive thaw slump on soil freeze-thaw erosion in permafrost regions on the Qinghai-Tibet Plateau, China.LAND DEGRADATION & DEVELOPMENT,34(9). |
MLA | Jiao, Chenglong,et al."Quantifying the effect of a retrogressive thaw slump on soil freeze-thaw erosion in permafrost regions on the Qinghai-Tibet Plateau, China".LAND DEGRADATION & DEVELOPMENT 34.9(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。