CCPortal
DOI10.1007/s43630-023-00371-y
Stratospheric ozone, UV radiation, and climate interactions
Bernhard, G. H.; Bais, A. F.; Aucamp, P. J.; Klekociuk, A. R.; Liley, J. B.; McKenzie, R. L.
发表日期2023
ISSN1474-905X
EISSN1474-9092
起始页码937
结束页码989
卷号22期号:5
英文摘要This assessment provides a comprehensive update of the effects of changes in stratospheric ozone and other factors (aerosols, surface reflectivity, solar activity, and climate) on the intensity of ultraviolet (UV) radiation at the Earth's surface. The assessment is performed in the context of the Montreal Protocol on Substances that Deplete the Ozone Layer and its Amendments and Adjustments. Changes in UV radiation at low-and mid-latitudes (0-60 degrees) during the last 25 years have generally been small (e.g., typically less than 4% per decade, increasing at some sites and decreasing at others) and were mostly driven by changes in cloud cover and atmospheric aerosol content, caused partly by climate change and partly by measures to control tropospheric pollution. Without the Montreal Protocol, erythemal (sunburning) UV irradiance at northern and southern latitudes of less than 50 degrees would have increased by 10-20% between 1996 and 2020. For southern latitudes exceeding 50 degrees, the UV Index (UVI) would have surged by between 25% (year-round at the southern tip of South America) and more than 100% (South Pole in spring). Variability of erythemal irradiance in Antarctica was very large during the last four years. In spring 2019, erythemal UV radiation was at the minimum of the historical (1991-2018) range at the South Pole, while near record-high values were observed in spring 2020, which were up to 80% above the historical mean. In the Arctic, some of the highest erythemal irradiances on record were measured in March and April 2020. For example in March 2020, the monthly average UVI over a site in the Canadian Arctic was up to 70% higher than the historical (2005-2019) average, often exceeding this mean by three standard deviations. Under the presumption that all countries will adhere to the Montreal Protocol in the future and that atmospheric aerosol concentrations remain constant, erythemal irradiance at mid-latitudes (30-60 degrees) is projected to decrease between 2015 and 2090 by 2-5% in the north and by 4-6% in the south due to recovering ozone. Changes projected for the tropics are = 3%. However, in industrial regions that are currently affected by air pollution, UV radiation will increase as measures to reduce air pollutants will gradually restore UV radiation intensities to those of a cleaner atmosphere. Since most substances controlled by the Montreal Protocol are also greenhouse gases, the phase-out of these substances may have avoided warming by 0.5-1.0 degrees C over mid-latitude regions of the continents, and by more than 1.0 degrees C in the Arctic; however, the uncertainty of these calculations is large. We also assess the effects of changes in stratospheric ozone on climate, focusing on the poleward shift of climate zones, and discuss the role of the small Antarctic ozone hole in 2019 on the devastating Black Summer fires in Australia. Additional topics include the assessment of advances in measuring and modeling of UV radiation; methods for determining personal UV exposure; the effect of solar radiation management (stratospheric aerosol injections) on UV radiation relevant for plants; and possible revisions to the vitamin D action spectrum, which describes the wavelength dependence of the synthesis of previtamin D3 in human skin upon exposure to UV radiation.
语种英语
WOS研究方向Biochemistry & Molecular Biology ; Biophysics ; Chemistry, Physical
WOS类目Science Citation Index Expanded (SCI-EXPANDED)
WOS记录号WOS:000976252000001
来源期刊PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/281213
作者单位Aristotle University of Thessaloniki; Australian Antarctic Division; National Institute of Water & Atmospheric Research (NIWA) - New Zealand
推荐引用方式
GB/T 7714
Bernhard, G. H.,Bais, A. F.,Aucamp, P. J.,et al. Stratospheric ozone, UV radiation, and climate interactions[J],2023,22(5).
APA Bernhard, G. H.,Bais, A. F.,Aucamp, P. J.,Klekociuk, A. R.,Liley, J. B.,&McKenzie, R. L..(2023).Stratospheric ozone, UV radiation, and climate interactions.PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES,22(5).
MLA Bernhard, G. H.,et al."Stratospheric ozone, UV radiation, and climate interactions".PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES 22.5(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bernhard, G. H.]的文章
[Bais, A. F.]的文章
[Aucamp, P. J.]的文章
百度学术
百度学术中相似的文章
[Bernhard, G. H.]的文章
[Bais, A. F.]的文章
[Aucamp, P. J.]的文章
必应学术
必应学术中相似的文章
[Bernhard, G. H.]的文章
[Bais, A. F.]的文章
[Aucamp, P. J.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。