CCPortal
DOI10.1021/acs.accounts.2c00326
Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value- Added Products over Porous Metal/Covalent Organic Frameworks
Wu, Qiu-Jin; Liang, Jun; Huang, Yuan-Biao; Cao, Rong
发表日期2022
ISSN0001-4842
EISSN1520-4898
起始页码2978
结束页码2997
卷号55期号:20
英文摘要CONSPECTUS: The continuing increase of the concentration of atmospheric CO2 has caused many environmental issues including climate change. Catalytic conversion of CO2 using thermochemical, electrochemical, and photochemical methods is a potential technique to decrease the CO2 concentration and simultaneously obtain value-added chemicals. Due to the high energy barrier of CO2 however, this method is still far from large-scale applications which requires high activity, selectivity, and stability. Therefore, development of efficient catalysts to convert CO2 to different products is urgent. With their well-engineered pores and chemical compositions, high surface area, elevated CO2 adsorption capability, and adjustable active sites, porous crystalline frameworks including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are potential materials for catalytic CO2 conversion. Here, we summarize our recent work on MOFs and COFs for thermocatalytic, electrocatalytic, and photocatalytic CO2 conversion and describe the structure-activity relationships that could guide the design of effective catalysts. The first section of this paper describes imidazolium-functionalized porous MOFs, including porous liquid and cationic MOFs with nucleophilic halogen ions, which can promote thermocatalytically CO2 cycloaddition reaction with epoxides toward cyclic carbonates at one bar pressure. A porous liquid MOF takes on the role of a CO2 reservoir to tackle the low local CO2 concentrations in gas-liquid-solid heterogeneous reactions. Imidazolium-functionalized MOFs with halogen ions for CO2 cycloaddition could avoid the use of cocatalysts, and this leads to milder and more facile experimental conditions and separation processes. In a section dealing with the electrocatalytic CO2 reduction reaction (CO2RR), we developed a series of conductive porous framework materials with fast electron transmission capabilities, which afford high current densities and outperform the traditional MOF and COF catalysts that have been reported. The intrinsically conductive two-dimensional 2D MOFs and COFs nanosheets based on the fully pi-conjugated phthalocyanine motif with excellent electron transport capability were prepared, and strong electron transporters were also integrated into metalloporphyrin-based COFs for CO2RR. Cu2O quantum dots and Cu nanoparticles (NPs) can be uniformly dispersed on porous conductive MOFs/COFs to afford synergistic and/or tandem electrocatalysts, which can achieve highly selective production of CH4 or C2H4 in CO2RR. A third section describes our efforts to facilitate electron-hole separation in CO2 photocatalysis. Our focus is on regulation of coordination spheres in MOFs, fabrication of the architecture of MOF heterojunctions, and engineering MOF films to facilitate photocatalytic CO2 reduction.Finally, we discuss several problems associated with the studies of MOFs and COFs for CO2 conversion and consider some prospects of the fabrication of effective porous frameworks for CO2 adsorption and conversion.
语种英语
WOS研究方向Chemistry, Multidisciplinary
WOS类目Science Citation Index Expanded (SCI-EXPANDED)
WOS记录号WOS:000867493300001
来源期刊ACCOUNTS OF CHEMICAL RESEARCH
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/281136
作者单位Chinese Academy of Sciences; Fujian Institute of Research on the Structure of Matter, CAS; Hebei University of Technology; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
推荐引用方式
GB/T 7714
Wu, Qiu-Jin,Liang, Jun,Huang, Yuan-Biao,et al. Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value- Added Products over Porous Metal/Covalent Organic Frameworks[J],2022,55(20).
APA Wu, Qiu-Jin,Liang, Jun,Huang, Yuan-Biao,&Cao, Rong.(2022).Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value- Added Products over Porous Metal/Covalent Organic Frameworks.ACCOUNTS OF CHEMICAL RESEARCH,55(20).
MLA Wu, Qiu-Jin,et al."Thermo-, Electro-, and Photocatalytic CO2 Conversion to Value- Added Products over Porous Metal/Covalent Organic Frameworks".ACCOUNTS OF CHEMICAL RESEARCH 55.20(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Qiu-Jin]的文章
[Liang, Jun]的文章
[Huang, Yuan-Biao]的文章
百度学术
百度学术中相似的文章
[Wu, Qiu-Jin]的文章
[Liang, Jun]的文章
[Huang, Yuan-Biao]的文章
必应学术
必应学术中相似的文章
[Wu, Qiu-Jin]的文章
[Liang, Jun]的文章
[Huang, Yuan-Biao]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。