Climate Change Data Portal
DOI | 10.1016/j.soilbio.2022.108648 |
The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter | |
Cotrufo, M. Francesca; Haddix, Michelle L.; Kroeger, Marie E.; Stewart, Catherine E. | |
发表日期 | 2022 |
ISSN | 0038-0717 |
EISSN | 1879-3428 |
卷号 | 168 |
英文摘要 | Soil organic matter (SOM) is a fundamental resource to humanity for the many ecosystem services it provides. Increasing its stocks can significantly contribute to climate change mitigation and the sustainability of agricul-tural production. Elucidating the mechanisms and drivers of the formation of the main components of SOM, particulate (POM) and mineral associated (MAOM) organic matter, from the decomposition of plant inputs is therefore critical to inform management and policy designed to promote SOM regeneration. We designed a two-tiered laboratory incubation experiment using C-13 and N-15 labeled plant material to investigate the effects of the physical nature (i.e., structural versus soluble) of plant inputs as well as their chemical composition on (1) the pathways of SOM formation, (2) the soil microbial community and chemical diversity, and (3) their interaction on the stabilization efficiency of litter-derived C in POM and MAOM, in a topsoil and a subsoil. We found that: i) the physical nature of the plant input (structural vs soluble) drove both the pathways and efficiencies of SOM formation; ii) POM formation from the decomposition of structural residues increased in efficiency the more decomposed were the residues, and linearly with soil microbial and chemical diversity, the latter only for subsoil; ii) more input-derived C and N were retained in subsoil because of both higher stabilization in MAOM and POM, and slower residue decay. Our results also confirm the importance of direct sorption of soluble inputs to silt-and clay-sized minerals for the formation of MAOM in bulk soils. Taken together these finding suggest that the highest potential for SOM accrual is in subsoils characterized by higher C saturation deficit, from the separate addition of decomposed residues and soluble plant inputs. |
英文关键词 | Litter decomposition; Soil organic matter; Chemical diversity; Microbial diversity; Mineral-associated organic matter; Particulate organic matter |
语种 | 英语 |
WOS研究方向 | Soil Science |
WOS类目 | Science Citation Index Expanded (SCI-EXPANDED) |
WOS记录号 | WOS:000793216400003 |
来源期刊 | SOIL BIOLOGY & BIOCHEMISTRY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/281096 |
作者单位 | Colorado State University; Colorado State University; United States Department of Energy (DOE); Los Alamos National Laboratory; United States Department of Agriculture (USDA) |
推荐引用方式 GB/T 7714 | Cotrufo, M. Francesca,Haddix, Michelle L.,Kroeger, Marie E.,et al. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter[J],2022,168. |
APA | Cotrufo, M. Francesca,Haddix, Michelle L.,Kroeger, Marie E.,&Stewart, Catherine E..(2022).The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter.SOIL BIOLOGY & BIOCHEMISTRY,168. |
MLA | Cotrufo, M. Francesca,et al."The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter".SOIL BIOLOGY & BIOCHEMISTRY 168(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。