Climate Change Data Portal
DOI | 10.1145/3485128 |
Tackling Climate Change with Machine Learning | |
Rolnick, David; Donti, Priya L.; Kaack, Lynn H.; Kochanski, Kelly; Lacoste, Alexandre; Sankaran, Kris; Ross, Andrew Slavin; Milojevic-Dupont, Nikola; Jaques, Natasha; Waldman-Brown, Anna; Luccioni, Alexandra Sasha; Maharaj, Tegan; Sherwin, Evan D.; Mukkavilli, S. Karthik; Kording, Konrad P.; Gomes, Carla P.; Ng, Andrew Y.; Hassabis, Demis; Platt, John C.; Creutzig, Felix; Chayes, Jennifer; Bengio, Yoshua | |
发表日期 | 2023 |
ISSN | 0360-0300 |
EISSN | 1557-7341 |
卷号 | 55期号:2 |
英文摘要 | Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change. |
英文关键词 | Climate change; mitigation; adaptation; machine learning; artificial intelligence |
语种 | 英语 |
WOS研究方向 | Computer Science, Theory & Methods |
WOS类目 | Science Citation Index Expanded (SCI-EXPANDED) |
WOS记录号 | WOS:000778458900019 |
来源期刊 | ACM COMPUTING SURVEYS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/280331 |
作者单位 | McGill University; Carnegie Mellon University; Swiss Federal Institutes of Technology Domain; ETH Zurich; University of Colorado System; University of Colorado Boulder; University of Wisconsin System; University of Wisconsin Madison; Universite de Montreal; New York University; Harvard University; Technical University of Berlin; Google Incorporated; University of California System; University of California Berkeley; Massachusetts Institute of Technology (MIT); Universite de Montreal; Polytechnique Montreal; Stanford University; University of California System; University of California Berkeley; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory; University of Pennsylvania; Cornell University |
推荐引用方式 GB/T 7714 | Rolnick, David,Donti, Priya L.,Kaack, Lynn H.,et al. Tackling Climate Change with Machine Learning[J],2023,55(2). |
APA | Rolnick, David.,Donti, Priya L..,Kaack, Lynn H..,Kochanski, Kelly.,Lacoste, Alexandre.,...&Bengio, Yoshua.(2023).Tackling Climate Change with Machine Learning.ACM COMPUTING SURVEYS,55(2). |
MLA | Rolnick, David,et al."Tackling Climate Change with Machine Learning".ACM COMPUTING SURVEYS 55.2(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。