CCPortal
DOI10.1145/3485128
Tackling Climate Change with Machine Learning
Rolnick, David; Donti, Priya L.; Kaack, Lynn H.; Kochanski, Kelly; Lacoste, Alexandre; Sankaran, Kris; Ross, Andrew Slavin; Milojevic-Dupont, Nikola; Jaques, Natasha; Waldman-Brown, Anna; Luccioni, Alexandra Sasha; Maharaj, Tegan; Sherwin, Evan D.; Mukkavilli, S. Karthik; Kording, Konrad P.; Gomes, Carla P.; Ng, Andrew Y.; Hassabis, Demis; Platt, John C.; Creutzig, Felix; Chayes, Jennifer; Bengio, Yoshua
发表日期2023
ISSN0360-0300
EISSN1557-7341
卷号55期号:2
英文摘要Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.
英文关键词Climate change; mitigation; adaptation; machine learning; artificial intelligence
语种英语
WOS研究方向Computer Science, Theory & Methods
WOS类目Science Citation Index Expanded (SCI-EXPANDED)
WOS记录号WOS:000778458900019
来源期刊ACM COMPUTING SURVEYS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/280331
作者单位McGill University; Carnegie Mellon University; Swiss Federal Institutes of Technology Domain; ETH Zurich; University of Colorado System; University of Colorado Boulder; University of Wisconsin System; University of Wisconsin Madison; Universite de Montreal; New York University; Harvard University; Technical University of Berlin; Google Incorporated; University of California System; University of California Berkeley; Massachusetts Institute of Technology (MIT); Universite de Montreal; Polytechnique Montreal; Stanford University; University of California System; University of California Berkeley; United States Department of Energy (DOE); Lawrence Berkeley National Laboratory; University of Pennsylvania; Cornell University
推荐引用方式
GB/T 7714
Rolnick, David,Donti, Priya L.,Kaack, Lynn H.,et al. Tackling Climate Change with Machine Learning[J],2023,55(2).
APA Rolnick, David.,Donti, Priya L..,Kaack, Lynn H..,Kochanski, Kelly.,Lacoste, Alexandre.,...&Bengio, Yoshua.(2023).Tackling Climate Change with Machine Learning.ACM COMPUTING SURVEYS,55(2).
MLA Rolnick, David,et al."Tackling Climate Change with Machine Learning".ACM COMPUTING SURVEYS 55.2(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rolnick, David]的文章
[Donti, Priya L.]的文章
[Kaack, Lynn H.]的文章
百度学术
百度学术中相似的文章
[Rolnick, David]的文章
[Donti, Priya L.]的文章
[Kaack, Lynn H.]的文章
必应学术
必应学术中相似的文章
[Rolnick, David]的文章
[Donti, Priya L.]的文章
[Kaack, Lynn H.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。