CCPortal
DOI10.5194/acp-22-10789-2022
Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic
Che, Haochi; Stier, Philip; Watson-Parris, Duncan; Gordon, Hamish; Deaconu, Lucia
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码10789
结束页码10807
卷号22期号:16页码:19
英文摘要The semi-permanent stratocumulus clouds over the south-eastern Atlantic Ocean (SEA) can act as an air conditioner to the regional and global climate system. The interaction of aerosols and clouds becomes important in this region and can lead to negative radiative effects, partially offsetting the positive radiative forcing of greenhouse gases. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). In this paper, we use the United Kingdom Earth System Model (UKESM1) to investigate the sources of CCN (from emissions and atmospheric processes) in the SEA as well as the response of the cloud droplet number concentration (CDNC), the cloud liquid water path (LWP), and radiative forcing to these sources during 2016 and 2017. Overall, free and upper troposphere nucleated aerosols are the dominant source of the boundary layer CCN concentration at 0.2% supersaturation (CCN0.2%), contributing an annual average of similar to 41% as they subside and entrain into the marine boundary layer, which is consistent with observations highlighting the important role of nucleation in the boundary layer CCN concentration. In terms of emission sources, anthropogenic emissions (from energy, industry, agriculture, etc.) contribute the most to the annual average CCN0.2% in the marine boundary layer (similar to 26 %), followed by biomass burning (BB, similar to 17 %). In the cloud layer, BB contributes about 34% of the annual CCN0.2%, midway between the contributions from aerosol nucleation (36 %) and anthropogenic sources (31 %). The contribution of aerosols from different sources to the CDNC is consistent with their contribution to CCN0.2% within the marine boundary layer, with free and upper troposphere aerosol nucleation being the most important source of the CDNC overall. In terms of emission sources, anthropogenic sources are also the largest contributors to the annual average CDNC, closely followed by BB. However, during the BB season, BB and free and upper troposphere aerosol nucleation are equally the most important sources of the CDNC. The contribution of BB to the CDNC is more significant than its increase to CCN0.2%, mainly because BB aerosols are mostly located directly above the inversion layer in the model; thus, they can increase the in-cloud CDNC by enhancing the supersaturation through the dynamical feedback due to short-wave absorption. An aerosol source that shows an increase in the CDNC also shows an increase in the LWP resulting from a reduction in autoconversion. Due to the absorption effect, BB aerosol can enhance existing temperature inversions and reduce the entrainment of sub-saturated air, leading to a further increase in the LWP. As a result, the contribution of BB to the LWP is second only to aerosol nucleation on annual averages. These findings demonstrate that BB is not the dominant source of CCN within the marine boundary layer from an emission source perspective. However, as most BB aerosols are located directly above the inversion layer, their effect on clouds increases due to their absorption effect (about the same as anthropogenic sources for the CDNC and more than anthropogenic sources for the LWP), highlighting the crucial role of their radiative effect on clouds. The results on the radiative effects of aerosols show that BB aerosol exhibits an overall positive RFari (radiative forcing associated with aerosol-radiation interactions), but its net effective radiative forcing remains negative due to its effect on clouds (mainly due to its absorbing effect). By quantifying aerosol and cloud properties affected by different sources, this paper provides a framework for understanding the effects of aerosol sources on marine stratocumulus clouds and radiation in the SEA.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000844274100001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273817
作者单位University of Oxford; University of Leeds; Tel Aviv University; Carnegie Mellon University; Babes Bolyai University from Cluj
推荐引用方式
GB/T 7714
Che, Haochi,Stier, Philip,Watson-Parris, Duncan,et al. Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic[J],2022,22(16):19.
APA Che, Haochi,Stier, Philip,Watson-Parris, Duncan,Gordon, Hamish,&Deaconu, Lucia.(2022).Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(16),19.
MLA Che, Haochi,et al."Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.16(2022):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Che, Haochi]的文章
[Stier, Philip]的文章
[Watson-Parris, Duncan]的文章
百度学术
百度学术中相似的文章
[Che, Haochi]的文章
[Stier, Philip]的文章
[Watson-Parris, Duncan]的文章
必应学术
必应学术中相似的文章
[Che, Haochi]的文章
[Stier, Philip]的文章
[Watson-Parris, Duncan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。