CCPortal
DOI10.5194/acp-22-15449-2022
Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry
Bergin, Rachel A.; Harkey, Monica; Hoffman, Alicia; Moore, Richard H.; Anderson, Bruce; Beyersdorf, Andreas; Ziemba, Luke; Thornhill, Lee; Winstead, Edward; Holloway, Tracey; Bertram, Timothy H.
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码15449
结束页码15468
卷号22期号:23页码:20
英文摘要Heterogeneous reactions occurring at the surface of atmospheric aerosol particles regulate the production and lifetime of a wide array of atmospheric gases. Aerosol surface area plays a critical role in setting the rate of heterogeneous reactions in the atmosphere. Despite the central role of aerosol surface area, there are few assessments of the accuracy of aerosol surface area concentrations in regional and global models. In this study, we compare aerosol surface area concentrations in the EPA's Community Multiscale Air Quality (CMAQ) model with commensurate observations from the 2011 NASA flight-based DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) campaign. The study region includes the Baltimore and Washington, D.C. metropolitan area. Dry aerosol surface area was measured aboard the NASA P-3B aircraft using an ultra-high-sensitivity aerosol spectrometer (UHSAS). We show that modeled and measured dry aerosol surface area, Sa,mod and Sa,meas respectively, are modestly correlated (r2=0.52) and on average agree to within a factor of 2 (Sa,mod/Sa,meas=0.44) over the course of the 13 research flights. We show that Sa,mod/Sa,meas does not depend strongly on photochemical age or the concentration of secondary biogenic aerosol, suggesting that the condensation of low-volatility gas-phase compounds does not strongly affect model-measurement agreement. In comparison, there is strong agreement between measured and modeled aerosol number concentration (Nmod/Nmeas=0.87, r2=0.63). The persistent underestimate of Sa in the model, combined with strong agreement in modeled and measured aerosol number concentrations, suggests that model representation of the size distribution of primary emissions or secondary aerosol formed at the early stages of oxidation may contribute to the observed differences. For reactions occurring on small particles, the rate of heterogeneous reactions is a linear function of both Sa and the reactive uptake coefficient (gamma). To assess the importance of uncertainty in modeled Sa for the representation of heterogeneous reactions in models, we compare both the mean and the variance in Sa,mod/Sa,meas to those in gamma(N2O5)mod/gamma(N2O5)meas. We find that the uncertainty in model representation of heterogeneous reactions is primarily driven by uncertainty in the parametrization of reactive uptake coefficients, although the discrepancy between Sa,mod and Sa,meas is not insignificant. Our analysis suggests that model improvements to aerosol surface area concentrations, in addition to more accurate parameterizations of heterogeneous kinetics, will advance the representation of heterogeneous chemistry in regional models.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000893425500001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273765
作者单位University of Wisconsin System; University of Wisconsin Madison; University of Wisconsin System; University of Wisconsin Madison; University of Wisconsin System; University of Wisconsin Madison; National Aeronautics & Space Administration (NASA); NASA Langley Research Center; Science Systems and Applications Inc; California State University System; California State University San Bernardino
推荐引用方式
GB/T 7714
Bergin, Rachel A.,Harkey, Monica,Hoffman, Alicia,et al. Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry[J],2022,22(23):20.
APA Bergin, Rachel A..,Harkey, Monica.,Hoffman, Alicia.,Moore, Richard H..,Anderson, Bruce.,...&Bertram, Timothy H..(2022).Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(23),20.
MLA Bergin, Rachel A.,et al."Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.23(2022):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bergin, Rachel A.]的文章
[Harkey, Monica]的文章
[Hoffman, Alicia]的文章
百度学术
百度学术中相似的文章
[Bergin, Rachel A.]的文章
[Harkey, Monica]的文章
[Hoffman, Alicia]的文章
必应学术
必应学术中相似的文章
[Bergin, Rachel A.]的文章
[Harkey, Monica]的文章
[Hoffman, Alicia]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。