CCPortal
DOI10.5194/acp-22-9349-2022
Climate consequences of hydrogen emissions
Ocko, Ilissa B.; Hamburg, Steven P.
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码9349
结束页码9368
卷号22期号:14页码:20
英文摘要Given the urgency to decarbonize global energy systems, governments and industry are moving ahead with efforts to increase deployment of hydrogen technologies, infrastructure, and applications at an unprecedented pace, including USD billions in national incentives and direct investments. While zero- and low-carbon hydrogen hold great promise to help solve some of the world's most pressing energy challenges, hydrogen is also an indirect greenhouse gas whose warming impact is both widely overlooked and underestimated. This is largely because hydrogen's atmospheric warming effects are short-lived - lasting only a couple decades - but standard methods for characterizing climate impacts of gases consider only the long-term effect from a one-time pulse of emissions. For gases whose impacts are short-lived, like hydrogen, this long-term framing masks a much stronger warming potency in the near to medium term. This is of concern because hydrogen is a small molecule known to easily leak into the atmosphere, and the total amount of emissions (e.g., leakage, venting, and purging) from existing hydrogen systems is unknown. Therefore, the effectiveness of hydrogen as a decarbonization strategy, especially over timescales of several decades, remains unclear. This paper evaluates the climate consequences of hydrogen emissions over all timescales by employing already published data to assess its potency as a climate forcer, evaluate the net warming impacts from replacing fossil fuel technologies with their clean hydrogen alternatives, and estimate temperature responses to projected levels of hydrogen demand. We use the standard global warming potential metric, given its acceptance to stakeholders, and incorporate newly published equations that more fully capture hydrogen's several indirect effects, but we consider the effects of constant rather than pulse emissions over multiple time horizons. We account for a plausible range of hydrogen emission rates and include methane emissions when hydrogen is produced via natural gas with carbon capture, usage, and storage (CCUS) (blue hydrogen) as opposed to renewables and water (green hydrogen). For the first time, we show the strong timescale dependence when evaluating the climate change mitigation potential of clean hydrogen alternatives, with the emission rate determining the scale of climate benefits or disbenefits. For example, green hydrogen applications with higher-end emission rates (10 %) may only cut climate impacts from fossil fuel technologies in half over the first 2 decades, which is far from the common perception that green hydrogen energy systems are climate neutral. However, over a 100-year period, climate impacts could be reduced by around 80 %. On the other hand, lower-end emissions (1 %) could yield limited impacts on the climate over all timescales. For blue hydrogen, associated methane emissions can make hydrogen applications worse for the climate than fossil fuel technologies for several decades if emissions are high for both gases; however, blue hydrogen yields climate benefits over a 100-year period. While more work is needed to evaluate the warming impact of hydrogen emissions for specific end-use cases and value-chain pathways, it is clear that hydrogen emissions matter for the climate and warrant further attention from scientists, industry, and governments. This is critical to informing where and how to deploy hydrogen effectively in the emerging decarbonized global economy.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000827462300001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273733
作者单位Environmental Defense Fund
推荐引用方式
GB/T 7714
Ocko, Ilissa B.,Hamburg, Steven P.. Climate consequences of hydrogen emissions[J],2022,22(14):20.
APA Ocko, Ilissa B.,&Hamburg, Steven P..(2022).Climate consequences of hydrogen emissions.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(14),20.
MLA Ocko, Ilissa B.,et al."Climate consequences of hydrogen emissions".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.14(2022):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ocko, Ilissa B.]的文章
[Hamburg, Steven P.]的文章
百度学术
百度学术中相似的文章
[Ocko, Ilissa B.]的文章
[Hamburg, Steven P.]的文章
必应学术
必应学术中相似的文章
[Ocko, Ilissa B.]的文章
[Hamburg, Steven P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。