CCPortal
DOI10.5194/acp-23-1131-2023
Climate-driven deterioration of future ozone pollution in Asia predicted bymachine learning with multi-source data
Li, Huimin; Yang, Yang; Jin, Jianbing; Wang, Hailong; Li, Ke; Wang, Pinya; Liao, Hong
发表日期2023
ISSN1680-7316
EISSN1680-7324
起始页码1131
结束页码1145
卷号23期号:2页码:15
英文摘要Ozone (O3) is a secondary pollutant in the atmosphere formed by photochemical reactions that endangers human health and ecosystems. O3 has aggravated in Asia in recent decades and will vary in the future. In this study, to quantify the impacts of future climate change on O3 pollution, near-surface O3 concentrations over Asia in 2020-2100 are projected using a machine learning (ML) method along with multi-source data. The ML model is trained with combined O3 data from a global atmospheric chemical transport model and real-time observations. The ML model is then used to estimate future O3 with meteorological fields from multi-model simulations under various climate scenarios. The near-surface O3 concentrations are projected to increase by 5 %-20 % over South China, Southeast Asia, and South India and less than 10 % over North China and the Gangetic Plains under the high-forcing scenarios in the last decade of 21st century, compared to the first decade of 2020-2100. The O3 increases are primarily owing to the favorable meteorological conditions for O3 photochemical formation in most Asian regions. We also find that the summertime O3 pollution over eastern China will expand from North China to South China and extend into the cold season in a warmer future. Our results demonstrate the important role of a climate change penalty on Asian O3 in the future, which provides implications for environmental and climate strategies of adaptation and mitigation.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000921371100001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273631
作者单位Nanjing University of Information Science & Technology; United States Department of Energy (DOE); Pacific Northwest National Laboratory
推荐引用方式
GB/T 7714
Li, Huimin,Yang, Yang,Jin, Jianbing,et al. Climate-driven deterioration of future ozone pollution in Asia predicted bymachine learning with multi-source data[J],2023,23(2):15.
APA Li, Huimin.,Yang, Yang.,Jin, Jianbing.,Wang, Hailong.,Li, Ke.,...&Liao, Hong.(2023).Climate-driven deterioration of future ozone pollution in Asia predicted bymachine learning with multi-source data.ATMOSPHERIC CHEMISTRY AND PHYSICS,23(2),15.
MLA Li, Huimin,et al."Climate-driven deterioration of future ozone pollution in Asia predicted bymachine learning with multi-source data".ATMOSPHERIC CHEMISTRY AND PHYSICS 23.2(2023):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Huimin]的文章
[Yang, Yang]的文章
[Jin, Jianbing]的文章
百度学术
百度学术中相似的文章
[Li, Huimin]的文章
[Yang, Yang]的文章
[Jin, Jianbing]的文章
必应学术
必应学术中相似的文章
[Li, Huimin]的文章
[Yang, Yang]的文章
[Jin, Jianbing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。