CCPortal
DOI10.5194/acp-22-1939-2022
High-resolution mapping of regional traffic emissions using land-use machine learning models
Wu, Xiaomeng; Yang, Daoyuan; Wu, Ruoxi; Gu, Jiajun; Wen, Yifan; Zhang, Shaojun; Wu, Rui; Wang, Renjie; Xu, Honglei; Zhang, K. Max; Wu, Ye; Hao, Jiming
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码1939
结束页码1950
卷号22期号:3页码:12
英文摘要On-road vehicle emissions are a major contributor to significant atmospheric pollution in populous metropolitan areas. We developed an hourly link-level emissions inventory of vehicular pollutants using two land-use machine learning methods based on road traffic monitoring datasets in the Beijing-Tianjin-Hebei (BTH) region. The results indicate that a land-use random forest (LURF) model is more capable of predicting traffic profiles than other machine learning models on most occasions in this study. The inventories under three different traffic scenarios depict a significant temporal and spatial variability in vehicle emissions. NOx, fine particulate matter (PM2.5), and black carbon (BC) emissions from heavy-duty trucks (HDTs) generally have a higher emission intensity on the highways connecting to regional ports. The model found a general reduction in light-duty passenger vehicles when traffic restrictions were implemented but a much more spatially heterogeneous impact on HDTs, with some road links experiencing up to 40 % increases in the HDT traffic volume. This study demonstrates the power of machine learning approaches to generate data-driven and high-resolution emission inventories, thereby providing a platform to realize the near-real-time process of establishing high-resolution vehicle emission inventories for policy makers to engage in sophisticated traffic management.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000759323100001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273565
作者单位Tsinghua University; Tsinghua University; Cornell University; Tsinghua University
推荐引用方式
GB/T 7714
Wu, Xiaomeng,Yang, Daoyuan,Wu, Ruoxi,et al. High-resolution mapping of regional traffic emissions using land-use machine learning models[J],2022,22(3):12.
APA Wu, Xiaomeng.,Yang, Daoyuan.,Wu, Ruoxi.,Gu, Jiajun.,Wen, Yifan.,...&Hao, Jiming.(2022).High-resolution mapping of regional traffic emissions using land-use machine learning models.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(3),12.
MLA Wu, Xiaomeng,et al."High-resolution mapping of regional traffic emissions using land-use machine learning models".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.3(2022):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Xiaomeng]的文章
[Yang, Daoyuan]的文章
[Wu, Ruoxi]的文章
百度学术
百度学术中相似的文章
[Wu, Xiaomeng]的文章
[Yang, Daoyuan]的文章
[Wu, Ruoxi]的文章
必应学术
必应学术中相似的文章
[Wu, Xiaomeng]的文章
[Yang, Daoyuan]的文章
[Wu, Ruoxi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。