Climate Change Data Portal
DOI | 10.5194/acp-22-14401-2022 |
Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau | |
Yin, Hao; Sun, Youwen; Notholt, Justus; Palm, Mathias; Ye, Chunxiang; Liu, Cheng | |
发表日期 | 2022 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 14401 |
结束页码 | 14419 |
卷号 | 22期号:21页码:19 |
英文摘要 | Improved knowledge of the chemistry and drivers of surface ozone over the Qinghai-Tibet Plateau (QTP) is significant for regulatory and control purposes in this high-altitude region in the Himalayas. In this study, we investigate the processes and drivers of surface ozone anomalies (defined as deviations of ozone levels relative to their seasonal means) between 2015 and 2020 in urban areas over the QTP. We separate quantitatively the contributions of anthropogenic emissions and meteorology to surface ozone anomalies by using the random forest (RF) machine-learning model-based meteorological normalization method. Diurnal and seasonal surface ozone anomalies over the QTP were mainly driven by meteorological conditions, such as temperature, planetary boundary layer height, surface incoming shortwave flux, downward transport velocity and inter-annual anomalies were mainly driven by anthropogenic emission. Depending on region and measurement hour, diurnal surface ozone anomalies varied over -27.82 to 37.11 mu g m(-3), whereas meteorological and anthropogenic contributions varied over -33.88 to 35.86 mu g m(-3) and -4.32 to 4.05 mu g m(-3) respectively. Exceptional meteorology drove 97 % of surface ozone non-attainment events from 2015 to 2020 in the urban areas over the QTP. Monthly averaged surface ozone anomalies from 2015 to 2020 varied with much smaller amplitudes than their diurnal anomalies, whereas meteorological and anthropogenic contributions varied over 7.63 to 55.61 mu g m(-3) and 3.67 to 35.28 mu g m(-3) respectively. The inter-annual trends of surface ozone in Ngari, Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be attributed to anthropogenic emissions in 95.77 %, 96.30 %, 97.83 %, 82.30 %, 99.26 % and 87.85 %, and meteorology in 4.23 %, 3.70 %, 2.17 %, 3.19 %, 0.74 % and 12.15 % respectively. The inter-annual trends of surface ozone in other cities were fully driven by anthropogenic emission, whereas the increasing inter-annual trends would have larger values if not for the favorable meteorological conditions. This study can not only improve our knowledge with respect to spatiotemporal variability of surface ozone but also provide valuable implications for ozone mitigation over the QTP. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000880202300001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273450 |
作者单位 | Chinese Academy of Sciences; Anhui Institute of Optics & Fine Mechanics (AIOFM), CAS; Hefei Institutes of Physical Science, CAS; Chinese Academy of Sciences; University of Science & Technology of China, CAS; University of Bremen; Peking University; Chinese Academy of Sciences; University of Science & Technology of China, CAS; Chinese Academy of Sciences; Institute of Urban Environment, CAS; Chinese Academy of Sciences; University of Science & Technology of China, CAS |
推荐引用方式 GB/T 7714 | Yin, Hao,Sun, Youwen,Notholt, Justus,et al. Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau[J],2022,22(21):19. |
APA | Yin, Hao,Sun, Youwen,Notholt, Justus,Palm, Mathias,Ye, Chunxiang,&Liu, Cheng.(2022).Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(21),19. |
MLA | Yin, Hao,et al."Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.21(2022):19. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。