CCPortal
DOI10.5194/acp-22-15093-2022
Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations
Ern, Manfred; Preusse, Peter; Riese, Martin
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码15093
结束页码15133
卷号22期号:22页码:41
英文摘要Atmospheric gravity waves contribute significantly to the driving of the global atmospheric circulation. Because of their small spatial scales, their effect on the circulation is usually parameterized in general circulation models. These parameterizations, however, are strongly simplified. One important but often neglected characteristic of the gravity wave distribution is the fact that gravity wave sources and, thus, the global distribution of gravity waves are both very intermittent. Therefore, time series of global observations of gravity waves are needed to study the distribution, seasonal variation, and strength of this effect. For gravity wave absolute momentum fluxes and potential energies observed by the High-Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) limb sounding satellite instruments, we investigate the global distribution of gravity wave intermittency by deriving probability density functions (PDFs) in different regions as well as global distributions of Gini coefficients. In the stratosphere, we find that intermittency is strongest in mountain wave regions, followed by the polar night jets and by regions of deep convection in the summertime subtropics. Intermittency is weakest in the tropics. A better comparability of intermittency in different years and regions is achieved by normalizing observations by their spatially and temporally varying monthly median distributions. Our results are qualitatively in agreement with previous findings from satellite observations and quantitatively in good agreement with previous findings from superpressure balloons and high-resolution models. Generally, momentum fluxes exhibit stronger intermittency than potential energies, and lognormal distributions are often a reasonable approximation of the PDFs. In the tropics, we find that, for monthly averages, intermittency increases with altitude, which might be a consequence of variations in the atmospheric background and, thus, varying gravity wave propagation conditions. Different from this, in regions of stronger intermittency, particularly in mountain wave regions, we find that intermittency decreases with altitude, which is likely related to the dissipation of large-amplitude gravity waves during their upward propagation.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000891134000001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273385
作者单位Helmholtz Association; Research Center Julich
推荐引用方式
GB/T 7714
Ern, Manfred,Preusse, Peter,Riese, Martin. Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations[J],2022,22(22):41.
APA Ern, Manfred,Preusse, Peter,&Riese, Martin.(2022).Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(22),41.
MLA Ern, Manfred,et al."Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.22(2022):41.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ern, Manfred]的文章
[Preusse, Peter]的文章
[Riese, Martin]的文章
百度学术
百度学术中相似的文章
[Ern, Manfred]的文章
[Preusse, Peter]的文章
[Riese, Martin]的文章
必应学术
必应学术中相似的文章
[Ern, Manfred]的文章
[Preusse, Peter]的文章
[Riese, Martin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。