Climate Change Data Portal
DOI | 10.5194/acp-22-2569-2022 |
Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest | |
Vesala, Timo; Kohonen, Kukka-Maaria; Kooijmans, Linda M. J.; Praplan, Arnaud P.; Foltynova, Lenka; Kolari, Pasi; Kulmala, Markku; Back, Jaana; Nelson, David; Yakir, Dan; Zahniser, Mark; Mammarella, Ivan | |
发表日期 | 2022 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 2569 |
结束页码 | 2584 |
卷号 | 22期号:4页码:16 |
英文摘要 | The seasonality and interannual variability of terrestrial carbonyl sulfide (COS) fluxes are poorly constrained. We present the first easy-to-use parameterization for the net COS forest sink based on the longest existing eddy covariance record from a boreal pine forest, covering 32 months over 5 years. Fluxes from hourly to yearly scales are reported, with the aim of revealing controlling factors and the level of interannual variability. The parameterization is based on the photosynthetically active radiation, vapor pressure deficit, air temperature, and leaf area index. Wavelet analysis of the ecosystem fluxes confirmed earlier findings from branch-level fluxes at the same site and revealed a 3 h lag between COS uptake and air temperature maxima at the daily scale, whereas no lag between radiation and COS flux was found. The spring recovery of the flux after the winter dormancy period was mostly governed by air temperature, and the onset of the uptake varied by 2 weeks. For the first time, we report a significant reduction in ecosystem-scale COS uptake under a large water vapor pressure deficit in summer. The maximum monthly and weekly median COS uptake varied by 26% and 20% between years, respectively. The timing of the latter varied by 6 weeks. The fraction of the nocturnal uptake remained below 21% of the total COS uptake. We observed the growing season (April-August) average net flux of COS totaling -58 :0 gS ha(-1) with 37% interannual variability. The long-term flux observations were scaled up to evergreen needleleaf forests (ENFs) in the whole boreal region using the Simple Biosphere Model Version 4 (SiB4). The observations were closely simulated using SiB4 meteorological drivers and phenology. The total COS uptake by boreal ENFs was in line with a missing COS sink at high latitudes pointed out in earlier studies. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000763280100001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273270 |
作者单位 | University of Helsinki; University of Helsinki; Yugra State University; Wageningen University & Research; Finnish Meteorological Institute; Czech Academy of Sciences; Global Change Research Centre of the Czech Academy of Sciences; Aerodyne Research; Weizmann Institute of Science |
推荐引用方式 GB/T 7714 | Vesala, Timo,Kohonen, Kukka-Maaria,Kooijmans, Linda M. J.,et al. Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest[J],2022,22(4):16. |
APA | Vesala, Timo.,Kohonen, Kukka-Maaria.,Kooijmans, Linda M. J..,Praplan, Arnaud P..,Foltynova, Lenka.,...&Mammarella, Ivan.(2022).Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(4),16. |
MLA | Vesala, Timo,et al."Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.4(2022):16. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。