Climate Change Data Portal
DOI | 10.5194/acp-22-9571-2022 |
A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water | |
Zhang, Guohua; Hu, Xiaodong; Sun, Wei; Yang, Yuxiang; Guo, Ziyong; Fu, Yuzhen; Wang, Haichao; Zhou, Shengzhen; Li, Lei; Tang, Mingjin; Shi, Zongbo; Chen, Duohong; Bi, Xinhui; Wang, Xinming | |
发表日期 | 2022 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 9571 |
结束页码 | 9582 |
卷号 | 22期号:14页码:12 |
英文摘要 | While the formation and evolution of nitrate in airborne particles are extensively investigated, little is known about the processing of nitrate in clouds. Here we present a detailed investigation on the in-cloud formation of nitrate, based on the size-resolved mixing state of nitrate in the individual cloud residual and cloud-free particles obtained by single particle mass spectrometry, and also the mass concentrations of nitrate in the cloud water and PM2.5 at a mountain site (1690 m a.s.l. - above sea level) in southern China. The results show a significant enhancement of nitrate mass fraction and relative intensity of nitrate in the cloud water and the cloud residual particles, respectively, reflecting a critical role of in-cloud processing in the formation of nitrate. We first exclude the gas-phase scavenging of HNO3 and the facilitated activation of nitrate-containing particles as the major contribution for the enhanced nitrate, according to the size distribution of nitrate in individual particles. Based on regression analysis and theoretical calculations, we then highlight the role of N2O5 hydrolysis in the in-cloud formation of nitrate, even during the daytime, attributed to the diminished light in clouds. Nitrate is highly related (R-2 = similar to 0.6) to the variations in [NOx] [O-3], temperature, and droplet surface area in clouds. Accounting for droplet surface area greatly enhances the predictability of the observed nitrate, compared with using [NOx] [O-3] and temperature. The substantial contribution of N2O5 hydrolysis to nitrate in clouds with diminished light during the daytime can be reproduced by a multiphase chemical box model. Assuming a photolysis rate at 30 % of the default setting, the overall contribution of N2O5 hydrolysis pathway to nitrate formation increases by similar to 20 % in clouds. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates would improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000830428800001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273197 |
作者单位 | Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS; Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS; Chinese Academy of Sciences; Chinese Academy of Sciences; Guangzhou Institute of Geochemistry, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Sun Yat Sen University; Jinan University; University of Birmingham |
推荐引用方式 GB/T 7714 | Zhang, Guohua,Hu, Xiaodong,Sun, Wei,et al. A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water[J],2022,22(14):12. |
APA | Zhang, Guohua.,Hu, Xiaodong.,Sun, Wei.,Yang, Yuxiang.,Guo, Ziyong.,...&Wang, Xinming.(2022).A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(14),12. |
MLA | Zhang, Guohua,et al."A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.14(2022):12. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。