Climate Change Data Portal
DOI | 10.5194/acp-23-851-2023 |
Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland | |
Faassen, Kim A. P.; Nguyen, Linh N. T.; Broekema, Eadin R.; Kers, Bert A. M.; Mammarella, Ivan; Vesala, Timo; Pickers, Penelope A.; Manning, Andrew C.; Vila-Guerau de Arellano, Jordi; Meijer, Harro A. J.; Peters, Wouter; Luijkx, Ingrid T. | |
发表日期 | 2023 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 851 |
结束页码 | 876 |
卷号 | 23期号:2页码:26 |
英文摘要 | The exchange ratio (ER) between atmospheric O(2 )and CO2 is a useful tracer for better understanding the carbon budget on global and local scales. The variability of ER (in mol O(2 )per mol CO2) between terrestrial ecosystems is not well known, and there is no consensus on how to derive the ER signal of an ecosystem, as there are different approaches available, either based on concentration (ERatmos) or flux measurements (ERforest). In this study we measured atmospheric O-2 and CO2 concentrations at two heights (23 and 125 m) above the boreal forest in Hyytiala, Finland. Such measurements of O-2 are unique and enable us to potentially identify which forest carbon loss and production mechanisms dominate over various hours of the day. We found that the ERatmos signal at 23 m not only represents the diurnal cycle of the forest exchange but also includes other factors, including entrainment of air masses in the atmospheric boundary layer before midday, with different thermodynamic and atmospheric composition characteristics. To derive ERforest, we infer O(2 )fluxes using multiple theoretical and observation-based micro-meteorological formulations to determine the most suitable approach. Our resulting ERforest shows a distinct difference in behaviour between daytime (0.92 +/- 0.17 mol mol(-1)) and nighttime (1.03 +/- 0.05 mol mol(-1)). These insights demonstrate the diurnal variability of different ER signals above a boreal forest, and we also confirmed that the signals of ERatmos and ERforest cannot be used interchangeably. Therefore, we recommend measurements on multiple vertical levels to derive O-2 and CO2 fluxes for the ERforest signal instead of a single level time series of the concentrations for the ERatmos signal. We show that ERforest can be further split into specific signals for respiration (1.03 +/-; 0.05 mol mol-1) and photosynthesis (0.96 +/- 0.12 molmol(-1)). This estimation allows us to separate the net ecosystem exchange (NEE) into gross primary production (GPP) and total ecosystem respiration (TER), giving comparable results to the more commonly used eddy covariance approach. Our study shows the potential of using atmospheric O-2 as an alternative and complementary method to gain new insights into the different CO2 signals that contribute to the forest carbon budget. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000917234500001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273136 |
作者单位 | Wageningen University & Research; University of Groningen; University of Helsinki; University of Helsinki; University of East Anglia; Max Planck Society |
推荐引用方式 GB/T 7714 | Faassen, Kim A. P.,Nguyen, Linh N. T.,Broekema, Eadin R.,et al. Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland[J],2023,23(2):26. |
APA | Faassen, Kim A. P..,Nguyen, Linh N. T..,Broekema, Eadin R..,Kers, Bert A. M..,Mammarella, Ivan.,...&Luijkx, Ingrid T..(2023).Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland.ATMOSPHERIC CHEMISTRY AND PHYSICS,23(2),26. |
MLA | Faassen, Kim A. P.,et al."Diurnal variability of atmospheric O-2, CO2, and their exchange ratio above a boreal forest in southern Finland".ATMOSPHERIC CHEMISTRY AND PHYSICS 23.2(2023):26. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。