Climate Change Data Portal
DOI | 10.5194/acp-22-3811-2022 |
Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates | |
Radice, Chloe; Brogniez, Helene; Kirstetter, Pierre-Emmanuel; Chambon, Philippe | |
发表日期 | 2022 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 3811 |
结束页码 | 3825 |
卷号 | 22期号:6页码:15 |
英文摘要 | A novel method of comparison between an atmospheric model and satellite probabilistic estimates of relative humidity (RH) in the tropical atmosphere is presented. The method is developed to assess the Meteo-France numerical weather forecasting model ARPEGE (Action de Recherche Petite Echelle Grande Echelle) using probability density functions (PDFs) of RH estimated from the SAPHIR (Sondeur Atmospherique du Profil d'Humidite Intertropicale par Radiometrie) microwave sounder. The satellite RH reference is derived by aggregating footprint-scale probabilistic RH to match the spatial and temporal resolution of ARPEGE over the April-May-June 2018 period. The probabilistic comparison is discussed with respect to a classical deterministic comparison confronting each model RH value to the reference average and using a set confidence interval. This study first documents the significant spatial and temporal variability in the reference distribution spread and shape. We demonstrate the need for a finer assessment at the individual case level to characterize specific situations beyond the classical bulk comparison using determinist best reference estimates. The probabilistic comparison allows for a more contrasted assessment than the deterministic one. Specifically, it reveals cases where the ARPEGE-simulated values falling within the deterministic confidence range actually correspond to extreme departures in the reference distribution, highlighting the shortcomings of the too-common Gaussian assumption of the reference, on which most current deterministic comparison methods are based. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000773398900001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273123 |
作者单位 | Centre National de la Recherche Scientifique (CNRS); UDICE-French Research Universities; Sorbonne Universite; Universite Paris Cite; Universite Paris Saclay; University of Oklahoma System; University of Oklahoma - Norman; National Oceanic Atmospheric Admin (NOAA) - USA; Centre National de la Recherche Scientifique (CNRS); Meteo France; Universite de Toulouse |
推荐引用方式 GB/T 7714 | Radice, Chloe,Brogniez, Helene,Kirstetter, Pierre-Emmanuel,et al. Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates[J],2022,22(6):15. |
APA | Radice, Chloe,Brogniez, Helene,Kirstetter, Pierre-Emmanuel,&Chambon, Philippe.(2022).Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(6),15. |
MLA | Radice, Chloe,et al."Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.6(2022):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。