CCPortal
DOI10.5194/acp-22-12543-2022
Correcting ozone biases in a global chemistry-climate model: implications for future ozone
Liu, Zhenze; Doherty, Ruth M.; Wild, Oliver; O'Connor, Fiona M.; Turnock, Steven T.
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码12543
结束页码12557
卷号22期号:18页码:15
英文摘要Weaknesses in process representation in chemistry-climate models lead to biases in simulating surface ozone and to uncertainty in projections of future ozone change. We here develop a deep learning model to demonstrate the feasibility of ozone bias correction in a global chemistry-climate model. We apply this approach to identify the key factors causing ozone biases and to correct projections of future surface ozone. Temperature and the related geographic variables latitude and month show the strongest relationship with ozone biases. This indicates that ozone biases are sensitive to temperature and suggests weaknesses in representation of temperature-sensitive physical or chemical processes. Photolysis rates are also an important factor, highlighting the sensitivity of biases to simulated cloud cover and insolation. Atmospheric chemical species such as the hydroxyl radical, nitric acid and peroxyacyl nitrate show strong positive relationships with ozone biases on a regional scale. These relationships reveal the conditions under which ozone biases occur, although they reflect association rather than direct causation. We correct model projections of future ozone under different climate and emission scenarios following the shared socio-economic pathways. We find that changes in seasonal ozone mixing ratios from the present day to the future are generally smaller than those simulated without bias correction, especially in high-emission regions. This suggests that the ozone sensitivity to changing emissions and climate may be overestimated with chemistry-climate models. Given the uncertainty in simulating future ozone, we show that deep learning approaches can provide improved assessment of the impacts of climate and emission changes on future air quality, along with valuable information to guide future model development.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000859019300001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273038
作者单位University of Edinburgh; Lancaster University; Met Office - UK; Hadley Centre; Met Office - UK; University of Leeds
推荐引用方式
GB/T 7714
Liu, Zhenze,Doherty, Ruth M.,Wild, Oliver,et al. Correcting ozone biases in a global chemistry-climate model: implications for future ozone[J],2022,22(18):15.
APA Liu, Zhenze,Doherty, Ruth M.,Wild, Oliver,O'Connor, Fiona M.,&Turnock, Steven T..(2022).Correcting ozone biases in a global chemistry-climate model: implications for future ozone.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(18),15.
MLA Liu, Zhenze,et al."Correcting ozone biases in a global chemistry-climate model: implications for future ozone".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.18(2022):15.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Zhenze]的文章
[Doherty, Ruth M.]的文章
[Wild, Oliver]的文章
百度学术
百度学术中相似的文章
[Liu, Zhenze]的文章
[Doherty, Ruth M.]的文章
[Wild, Oliver]的文章
必应学术
必应学术中相似的文章
[Liu, Zhenze]的文章
[Doherty, Ruth M.]的文章
[Wild, Oliver]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。