Climate Change Data Portal
DOI | 10.5194/acp-23-1285-2023 |
Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions | |
Mahrt, Fabian; Roesch, Carolin; Gao, Kunfeng; Dreimol, Christopher H.; Zawadowicz, Maria A.; Kanji, Zamin A. | |
发表日期 | 2023 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 1285 |
结束页码 | 1308 |
卷号 | 23期号:2页码:24 |
英文摘要 | Atmospheric aerosol particles play a key role in air pollution, health, and climate. Particles from biomass burning emissions are an important source of ambient aerosols, have increased over the past few decades, and are projected to further surge in the future as a result of climate and land use changes. Largely as a result of the variety of organic fuel materials and combustion types, particles emitted from biomass burning are often complex mixtures of inorganic and organic materials, with soot, ash, and charcoal having previously been identified as main particle types being emitted. Despite their importance for climate, their ice nucleationactivities remain insufficiently understood, in particular for charcoalparticles, whose ice nucleation activity has not been reported. Here, wepresent experiments of the ice nucleation activities of 400 nm size-selected charcoal particles, derived from the pyrolysis of two different biomass fuels, namely a grass charcoal and a wood charcoal. We find that the pyrolysis-derived charcoal types investigated do not contribute to ice formation via immersion freezing in mixed-phase cloud conditions. However, our results reveal considerable heterogeneous ice nucleation activity of both charcoal types at cirrus temperatures. An inspection of the ice nucleation results together with dynamic vapor sorption measurements indicates that cirrus ice formation proceeds via pore condensation and freezing. We find wood charcoal to be more ice-active than grass charcoal at cirrus temperatures. We attribute this to the enhanced porosity and water uptake capacity of the wood compared to the grass charcoal. In support of the results, we found a positive correlation of the ice nucleation activity of the wood charcoal particles and their chemical composition, specifically the presence of (inorganic) mineral components, based on single-particle mass spectrometry measurements. Even though correlational in nature, our results corroborate recent findings that ice-active minerals could largely govern the aerosol-cloud interactions of particles emitted from biomass burning emissions. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000919824500001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/272977 |
作者单位 | Swiss Federal Institutes of Technology Domain; ETH Zurich; Beihang University; Beihang University; Swiss Federal Institutes of Technology Domain; ETH Zurich; Swiss Federal Institutes of Technology Domain; Swiss Federal Laboratories for Materials Science & Technology (EMPA); United States Department of Energy (DOE); Brookhaven National Laboratory; Swiss Federal Institutes of Technology Domain; Paul Scherrer Institute |
推荐引用方式 GB/T 7714 | Mahrt, Fabian,Roesch, Carolin,Gao, Kunfeng,et al. Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions[J],2023,23(2):24. |
APA | Mahrt, Fabian,Roesch, Carolin,Gao, Kunfeng,Dreimol, Christopher H.,Zawadowicz, Maria A.,&Kanji, Zamin A..(2023).Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions.ATMOSPHERIC CHEMISTRY AND PHYSICS,23(2),24. |
MLA | Mahrt, Fabian,et al."Physicochemical properties of charcoal aerosols derived from biomass pyrolysis affect their ice-nucleating abilities at cirrus and mixed-phase cloud conditions".ATMOSPHERIC CHEMISTRY AND PHYSICS 23.2(2023):24. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。