Climate Change Data Portal
DOI | 10.5194/acp-23-2215-2023 |
The importance of acid-processed meteoric smoke relative to meteoricfragments for crystal nucleation in polar stratospheric clouds | |
James, Alexander D.; Pace, Finn; Sikora, Sebastien N. F.; Mann, Graham W.; Plane, John M. C.; Murray, Benjamin J. | |
发表日期 | 2023 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 2215 |
结束页码 | 2233 |
卷号 | 23期号:3页码:19 |
英文摘要 | The crystal formation of nitric acid trihydrate (NAT) in the absence of water ice is important for a subset of polar stratospheric clouds (PSCs) and thereby ozone depletion. It has been suggested that either fragmented meteoroids or meteoric smoke particles (MSPs), or possibly both, are important as heterogeneous nuclei of these crystals. Previous work has focused on the nucleating ability of meteoric material in nitric acid in the absence of sulfuric acid. However, it is known that when immersed in stratospheric sulfuric acid droplets, metal-containing meteoric material particles partially dissolve and components can reprecipitate as silica and alumina that have different morphologies to the original meteoric material. Hence, in this study, we experimentally and theoretically explore the relative role that sulfuric acid-processed MSPs and meteoric fragments may play in NAT nucleation in PSCs.We compared meteoric fragments that had recently been prepared (by milling a meteorite sample) to a sample annealed under conditions designed to simulate heating during entry into the Earth's atmosphere. Whilst the addition of sulfuric acid decreased the nucleating ability of the recently milled meteoric material relative to nucleation in binary nitric acid-water solutions (at similar NAT saturation ratio), the annealed meteoric fragments nucleated NAT with a similar effectiveness in both solutions. However, combining our results with measured fluxes of meteoric material to the Earth, sedimentation modelling and recent experiments on fragmentation of incoming meteoroids suggests that it is unlikely for there to be sufficient fragments to contribute to the nucleation of crystalline NAT particles.We then considered silica formed from sulfuric acid-processed MSPs. Our previous work showed that nanoparticulate silica (radius similar to 6 nm) is a relatively poor promoter of nucleation compared with micron-scaled silica particles, which were more effective. Both materials have similar chemical and structural (crystallographically amorphous) properties, indicating that size is critical. Here, we account for surface curvature of primary grains using the Classical Nucleation Theory (CNT) to explore this size dependence. This model is able to explain the discrepancy in nucleation effectiveness of fumed silica and fused quartz by treating their nucleating activity (contact angle) as equal but with differing particle size (or surface curvature), assuming interfacial energies that are physically reasonable. Here, we use this CNT model to present evidence that nucleation of NAT on acid-processed MSPs, where the primary grain size is tens of nanometres, is also effective enough to contribute to NAT crystals in early season PSCs where there is an absence of ice.This study demonstrates that the modelling of crystal nucleation in PSCs and resulting ozone depletion relies on an accurate understanding of the transport and chemical processing of MSPs. This will affect estimated sensitivity of stratospheric chemistry to rare events such as large volcanic eruptions and long-term forecasting of ozone recovery in a changing climate. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000933298800001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/272975 |
作者单位 | University of Leeds; University of Leeds |
推荐引用方式 GB/T 7714 | James, Alexander D.,Pace, Finn,Sikora, Sebastien N. F.,et al. The importance of acid-processed meteoric smoke relative to meteoricfragments for crystal nucleation in polar stratospheric clouds[J],2023,23(3):19. |
APA | James, Alexander D.,Pace, Finn,Sikora, Sebastien N. F.,Mann, Graham W.,Plane, John M. C.,&Murray, Benjamin J..(2023).The importance of acid-processed meteoric smoke relative to meteoricfragments for crystal nucleation in polar stratospheric clouds.ATMOSPHERIC CHEMISTRY AND PHYSICS,23(3),19. |
MLA | James, Alexander D.,et al."The importance of acid-processed meteoric smoke relative to meteoricfragments for crystal nucleation in polar stratospheric clouds".ATMOSPHERIC CHEMISTRY AND PHYSICS 23.3(2023):19. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。