CCPortal
DOI10.1038/s41893-022-00851-6
Improving biodiversity protection through artificial intelligence
Silvestro, Daniele; Goria, Stefano; Sterner, Thomas; Antonelli, Alexandre
发表日期2022
ISSN2398-9629
起始页码415
结束页码424
卷号5期号:5页码:10
英文摘要Over a million species face extinction, highlighting the urgent need for conservation policies that maximize the protection of biodiversity to sustain its manifold contributions to people's lives. Here we present a novel framework for spatial conservation prioritization based on reinforcement learning that consistently outperforms available state-of-the-art software using simulated and empirical data. Our methodology, conservation area prioritization through artificial intelligence (CAPTAIN), quantifies the trade-off between the costs and benefits of area and biodiversity protection, allowing the exploration of multiple biodiversity metrics. Under a limited budget, our model protects significantly more species from extinction than areas selected randomly or naively (such as based on species richness). CAPTAIN achieves substantially better solutions with empirical data than alternative software, meeting conservation targets more reliably and generating more interpretable prioritization maps. Regular biodiversity monitoring, even with a degree of inaccuracy characteristic of citizen science surveys, further improves biodiversity outcomes. Artificial intelligence holds great promise for improving the conservation and sustainable use of biological and ecosystem values in a rapidly changing and resource-limited world. Artificial intelligence methods can help biodiversity conservation planning in a rapidly evolving world. A framework based on reinforcement learning quantifies the trade-off between the costs and benefits of area and biodiversity protection and achieves better solutions with empirical data than alternative methods.
学科领域Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies
语种英语
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
WOS记录号WOS:000780305100003
来源期刊NATURE SUSTAINABILITY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/272890
作者单位University of Fribourg; Swiss Institute of Bioinformatics; University of Gothenburg; University of Gothenburg; University of Oxford; Royal Botanic Gardens, Kew
推荐引用方式
GB/T 7714
Silvestro, Daniele,Goria, Stefano,Sterner, Thomas,et al. Improving biodiversity protection through artificial intelligence[J],2022,5(5):10.
APA Silvestro, Daniele,Goria, Stefano,Sterner, Thomas,&Antonelli, Alexandre.(2022).Improving biodiversity protection through artificial intelligence.NATURE SUSTAINABILITY,5(5),10.
MLA Silvestro, Daniele,et al."Improving biodiversity protection through artificial intelligence".NATURE SUSTAINABILITY 5.5(2022):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Silvestro, Daniele]的文章
[Goria, Stefano]的文章
[Sterner, Thomas]的文章
百度学术
百度学术中相似的文章
[Silvestro, Daniele]的文章
[Goria, Stefano]的文章
[Sterner, Thomas]的文章
必应学术
必应学术中相似的文章
[Silvestro, Daniele]的文章
[Goria, Stefano]的文章
[Sterner, Thomas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。