CCPortal
DOI10.1016/j.enpol.2022.113097
A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India
Chaturvedi, Shobhit; Rajasekar, Elangovan; Natarajan, Sukumar; McCullen, Nick
发表日期2022
ISSN0301-4215
EISSN1873-6777
卷号168页码:13
英文摘要Selecting a suitable energy demand forecasting method is challenging due to the complex interplay of long-term trends, short-term seasonalities, and uncertainties. This paper compares four time-series models performance to predict total and peak monthly energy demand in India. Indian's Central Energy Authority's (CEA) existing trend-based model is used as a baseline against (i) Seasonal Auto-Regressive Integrated Moving Average (SARIMA), (ii) Long Short Term Memory Recurrent Neural Network (LSTM RNN) and (iii) Facebook (Fb) Prophet models. Using 108 months of training data to predict 24 months of unseen data, the CEA model performs well in predicting monthly total energy demand with low root-mean square error (RMSE 4.23 GWh) and mean absolute percentage error (MAPE, 3.4%), but significantly under predicts monthly peak energy demand (RMSE 13.31 GW, MAPE 7.2%). In contrast, Fb Prophet performs well for monthly total (RMSE 4.23 GWh, MAPE 3.3%) and peak demand (RMSE 6.51 GW, MAPE 3.01%). SARIMA and LSTM RNN have higher prediction errors than CEA and Fb Prophet. Thus, Fb Prophet is selected to develop future energy forecasts from 2019 to 2024, suggesting that India's annual total and peak energy demand will likely increase at an annual growth rate of 3.9% and 4.5%, respectively.
英文关键词Energy demand forecasting; SARIMA; LSTM RNN; Fb prophet
学科领域Economics; Energy & Fuels; Environmental Sciences; Environmental Studies
语种英语
WOS研究方向Business & Economics ; Energy & Fuels ; Environmental Sciences & Ecology
WOS记录号WOS:000828205300002
来源期刊ENERGY POLICY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/272283
作者单位Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Roorkee; Pandit Deendayal Energy University; University of Bath
推荐引用方式
GB/T 7714
Chaturvedi, Shobhit,Rajasekar, Elangovan,Natarajan, Sukumar,et al. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India[J],2022,168:13.
APA Chaturvedi, Shobhit,Rajasekar, Elangovan,Natarajan, Sukumar,&McCullen, Nick.(2022).A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India.ENERGY POLICY,168,13.
MLA Chaturvedi, Shobhit,et al."A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India".ENERGY POLICY 168(2022):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chaturvedi, Shobhit]的文章
[Rajasekar, Elangovan]的文章
[Natarajan, Sukumar]的文章
百度学术
百度学术中相似的文章
[Chaturvedi, Shobhit]的文章
[Rajasekar, Elangovan]的文章
[Natarajan, Sukumar]的文章
必应学术
必应学术中相似的文章
[Chaturvedi, Shobhit]的文章
[Rajasekar, Elangovan]的文章
[Natarajan, Sukumar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。