CCPortal
DOI10.1109/JSTARS.2022.3177227
Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau
Yang, Hong; Ju, Jianting; Guo, Hengliang; Qiao, Baojin; Nie, Bingkang; Zhu, Liping
通讯作者Zhu, LP (通讯作者)
发表日期2022
ISSN1939-1404
EISSN2151-1535
起始页码4279
结束页码4296
卷号15
英文摘要High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.
关键词MULTISPECTRAL SATELLITE IMAGERYWATER DEPTHNEURAL-NETWORKSAIRBORNE LIDARREGRESSIONRETRIEVALMODEL
英文关键词Lakes; Satellites; Remote sensing; Bathymetry; Data models; Analytical models; Earth; Bathymetric mapping; machine learning (ML); remote sensing depth inversion; Sentinel-2; shallow lake
语种英语
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000808062300002
来源期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/260596
推荐引用方式
GB/T 7714
Yang, Hong,Ju, Jianting,Guo, Hengliang,et al. Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau[J]. 中国科学院青藏高原研究所,2022,15.
APA Yang, Hong,Ju, Jianting,Guo, Hengliang,Qiao, Baojin,Nie, Bingkang,&Zhu, Liping.(2022).Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15.
MLA Yang, Hong,et al."Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Hong]的文章
[Ju, Jianting]的文章
[Guo, Hengliang]的文章
百度学术
百度学术中相似的文章
[Yang, Hong]的文章
[Ju, Jianting]的文章
[Guo, Hengliang]的文章
必应学术
必应学术中相似的文章
[Yang, Hong]的文章
[Ju, Jianting]的文章
[Guo, Hengliang]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。