Climate Change Data Portal
DOI | 10.1111/gcb.15854 |
Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction | |
Chen, Yongzhe; Feng, Xiaoming; Tian, Hanqin; Wu, Xutong; Gao, Zhen; Feng, Yu; Piao, Shilong; Lv, Nan; Pan, Naiqing; Fu, Bojie | |
通讯作者 | Fu, BJ (通讯作者) |
发表日期 | 2021 |
ISSN | 1354-1013 |
EISSN | 1365-2486 |
起始页码 | 5848 |
结束页码 | 5864 |
卷号 | 27期号:22 |
英文摘要 | China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001-2018, GPP in China increased significantly at a rate of 49.1-53.1 TgC/yr(2), and the climatic and anthropogenic contributions to GPP gains were comparable (48%-56% and 44%-52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming-pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4-24.9 TgC/yr(2)) during 2001-2018 was highly attributed to human activities (71%-81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001-2010 were generally offset by the climate-induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration. |
关键词 | NET PRIMARY PRODUCTIONFINE-ROOT BIOMASSGROSS PRIMARY PRODUCTIONSHORTWAVE RADIATIONLAND-USEPRECIPITATIONPRODUCTIVITYRESPIRATIONRESOLUTIONECOSYSTEMS |
英文关键词 | anthropogenic impacts; attribution analysis; China; climatic characteristics; interannual variation; vegetation carbon sequestration; vegetation cover |
语种 | 英语 |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
WOS类目 | Biodiversity Conservation ; Ecology ; Environmental Sciences |
WOS记录号 | WOS:000691024700001 |
来源期刊 | GLOBAL CHANGE BIOLOGY |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/260464 |
推荐引用方式 GB/T 7714 | Chen, Yongzhe,Feng, Xiaoming,Tian, Hanqin,et al. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction[J]. 中国科学院青藏高原研究所,2021,27(22). |
APA | Chen, Yongzhe.,Feng, Xiaoming.,Tian, Hanqin.,Wu, Xutong.,Gao, Zhen.,...&Fu, Bojie.(2021).Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction.GLOBAL CHANGE BIOLOGY,27(22). |
MLA | Chen, Yongzhe,et al."Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction".GLOBAL CHANGE BIOLOGY 27.22(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。