Climate Change Data Portal
DOI | 10.3390/w13213084 |
Analysis of the Radiation Fluxes over Complex Surfaces on the Tibetan Plateau | |
Wang, Chunxiao; Ma, Yaoming; Wang, Binbin; Ma, Weiqiang; Chen, Xuelong; Han, Cunbo | |
通讯作者 | Ma, YM (通讯作者) |
发表日期 | 2021 |
EISSN | 2073-4441 |
卷号 | 13期号:21 |
英文摘要 | Analysis of long-term, ground-based observation data on the Tibetan Plateau help to enhance our understanding of land-atmosphere interactions and their influence on weather and climate in this region. In this paper, the daily, monthly, and annual averages of radiative fluxes, surface albedo, surface temperature, and air temperature were calculated for the period of 2006 to 2019 at six research stations on the Tibetan Plateau. The surface energy balance characteristics of these six stations, which include alpine meadow, alpine desert, and alpine steppe, were then compared. The downward shortwave radiation at stations BJ, QOMS, and NAMORS was found to decrease during the study period, due to increasing cloudiness. Meanwhile, the upward shortwave radiation and surface albedo at all stations were found to have decreased overall. Downward longwave radiation, upward longwave radiation, net radiation, surface temperature, and air temperature showed increasing trends on inter-annual time scales at most stations. Downward shortwave radiation was maximum in spring at BJ, QOMS, NADORS, and NAMORS, due to the influence of the summer monsoon. Upward shortwave radiation peaked in October and November due to the greater snow cover. BJ, QOMS, NADORS, and NAMORS showed strong sensible heat fluxes in the spring while MAWORS showed strong sensible heat fluxes in the summer. The monthly and diurnal variations of surface albedo at each station were U shaped. The diurnal variability of downward longwave radiation at each station was small, ranging from 220 to 295 W & BULL;m(-2).The diurnal variation in surface temperature at each station slightly lagged behind changes in downward shortwave radiation, and the air temperature, in turn, slightly lagged behind the surface temperature. |
关键词 | WATER-VAPORALBEDO |
英文关键词 | Tibetan Plateau; surface characteristic parameter; radiation fluxes; observation data; land-atmosphere interaction |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
WOS类目 | Environmental Sciences ; Water Resources |
WOS记录号 | WOS:000718494200001 |
来源期刊 | WATER |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/260215 |
推荐引用方式 GB/T 7714 | Wang, Chunxiao,Ma, Yaoming,Wang, Binbin,et al. Analysis of the Radiation Fluxes over Complex Surfaces on the Tibetan Plateau[J]. 中国科学院青藏高原研究所,2021,13(21). |
APA | Wang, Chunxiao,Ma, Yaoming,Wang, Binbin,Ma, Weiqiang,Chen, Xuelong,&Han, Cunbo.(2021).Analysis of the Radiation Fluxes over Complex Surfaces on the Tibetan Plateau.WATER,13(21). |
MLA | Wang, Chunxiao,et al."Analysis of the Radiation Fluxes over Complex Surfaces on the Tibetan Plateau".WATER 13.21(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。