Climate Change Data Portal
DOI | 10.3390/su12072584 |
Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation | |
Ma, Hanqing; Ma, Chunfeng; Li, Xin; Yuan, Wenping; Liu, Zhengjia; Zhu, Gaofeng | |
通讯作者 | Ma, CF (通讯作者) |
发表日期 | 2020 |
EISSN | 2071-1050 |
卷号 | 12期号:7 |
英文摘要 | An ecosystem model serves as an important tool to understand the carbon cycle in the forest ecosystem. However, the sensitivities of parameters and uncertainties of the model outputs are not clearly understood. Parameter sensitivity analysis (SA) and uncertainty analysis (UA) play a crucial role in the improvement of forest gross primary productivity GPP simulation. This study presents a global SA based on an extended Fourier amplitude sensitivity test (EFAST) method to quantify the sensitivities of 16 parameters in the Flux-based ecosystem model (FBEM). To systematically evaluate the parameters' sensitivities, various parameter ranges, different model outputs, temporal variations of parameters sensitivity index (SI) were comprehensively explored via three experiments. Based on the numerical experiments of SA, the UA experiments were designed and performed for parameter estimation based on a Markov chain Monte Carlo (MCMC) method. The ratio of internal CO2 to air CO2 (f(Ci)), canopy quantum efficiency of photon conversion (alpha(q)), maximum carboxylation rate at 25 degrees C (V-m(25)) were the most sensitive parameters for the GPP. It was also indicated that alpha(q), E-Vm and Q(10) were influenced by temperature throughout the entire growth stage. The result of parameter estimation of only using four sensitive parameters (RMSE = 1.657) is very close to that using all the parameters (RMSE = 1.496). The results of SA suggest that sensitive parameters, such as f(ci), alpha(q), E-Vm, V-m(25) strongly influence on the forest GPP simulation, and the temporal characteristics of the parameters' SI on GPP and NEE were changed in different growth. The sensitive parameters were a major source of uncertainty and parameter estimation based on the parameter SA could lead to desirable results without introducing too great uncertainties. |
关键词 | GROSS PRIMARY PRODUCTIONEDDY COVARIANCE MEASUREMENTSPARAMETER-ESTIMATIONTERRESTRIALINVERSIONVARIABILITYEXCHANGEPHOTOSYNTHESISIMPACT |
英文关键词 | sensitivity analysis; flux-based ecosystem model; extended Fourier amplitude sensitivity test (EFAST); Howland forest; Markov chain Monte Carlo |
语种 | 英语 |
WOS研究方向 | Science & Technology - Other Topics ; Environmental Sciences & Ecology |
WOS类目 | Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies |
WOS记录号 | WOS:000531558100008 |
来源期刊 | SUSTAINABILITY |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/259955 |
推荐引用方式 GB/T 7714 | Ma, Hanqing,Ma, Chunfeng,Li, Xin,et al. Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation[J]. 中国科学院青藏高原研究所,2020,12(7). |
APA | Ma, Hanqing,Ma, Chunfeng,Li, Xin,Yuan, Wenping,Liu, Zhengjia,&Zhu, Gaofeng.(2020).Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation.SUSTAINABILITY,12(7). |
MLA | Ma, Hanqing,et al."Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation".SUSTAINABILITY 12.7(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。