CCPortal
DOI10.3390/su12072584
Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation
Ma, Hanqing; Ma, Chunfeng; Li, Xin; Yuan, Wenping; Liu, Zhengjia; Zhu, Gaofeng
通讯作者Ma, CF (通讯作者)
发表日期2020
EISSN2071-1050
卷号12期号:7
英文摘要An ecosystem model serves as an important tool to understand the carbon cycle in the forest ecosystem. However, the sensitivities of parameters and uncertainties of the model outputs are not clearly understood. Parameter sensitivity analysis (SA) and uncertainty analysis (UA) play a crucial role in the improvement of forest gross primary productivity GPP simulation. This study presents a global SA based on an extended Fourier amplitude sensitivity test (EFAST) method to quantify the sensitivities of 16 parameters in the Flux-based ecosystem model (FBEM). To systematically evaluate the parameters' sensitivities, various parameter ranges, different model outputs, temporal variations of parameters sensitivity index (SI) were comprehensively explored via three experiments. Based on the numerical experiments of SA, the UA experiments were designed and performed for parameter estimation based on a Markov chain Monte Carlo (MCMC) method. The ratio of internal CO2 to air CO2 (f(Ci)), canopy quantum efficiency of photon conversion (alpha(q)), maximum carboxylation rate at 25 degrees C (V-m(25)) were the most sensitive parameters for the GPP. It was also indicated that alpha(q), E-Vm and Q(10) were influenced by temperature throughout the entire growth stage. The result of parameter estimation of only using four sensitive parameters (RMSE = 1.657) is very close to that using all the parameters (RMSE = 1.496). The results of SA suggest that sensitive parameters, such as f(ci), alpha(q), E-Vm, V-m(25) strongly influence on the forest GPP simulation, and the temporal characteristics of the parameters' SI on GPP and NEE were changed in different growth. The sensitive parameters were a major source of uncertainty and parameter estimation based on the parameter SA could lead to desirable results without introducing too great uncertainties.
关键词GROSS PRIMARY PRODUCTIONEDDY COVARIANCE MEASUREMENTSPARAMETER-ESTIMATIONTERRESTRIALINVERSIONVARIABILITYEXCHANGEPHOTOSYNTHESISIMPACT
英文关键词sensitivity analysis; flux-based ecosystem model; extended Fourier amplitude sensitivity test (EFAST); Howland forest; Markov chain Monte Carlo
语种英语
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS记录号WOS:000531558100008
来源期刊SUSTAINABILITY
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259955
推荐引用方式
GB/T 7714
Ma, Hanqing,Ma, Chunfeng,Li, Xin,et al. Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation[J]. 中国科学院青藏高原研究所,2020,12(7).
APA Ma, Hanqing,Ma, Chunfeng,Li, Xin,Yuan, Wenping,Liu, Zhengjia,&Zhu, Gaofeng.(2020).Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation.SUSTAINABILITY,12(7).
MLA Ma, Hanqing,et al."Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation".SUSTAINABILITY 12.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Hanqing]的文章
[Ma, Chunfeng]的文章
[Li, Xin]的文章
百度学术
百度学术中相似的文章
[Ma, Hanqing]的文章
[Ma, Chunfeng]的文章
[Li, Xin]的文章
必应学术
必应学术中相似的文章
[Ma, Hanqing]的文章
[Ma, Chunfeng]的文章
[Li, Xin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。