Climate Change Data Portal
DOI | 10.3390/w12082146 |
Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982-2015) | |
Zeng, Zhaoqi; Li, Yamei; Wu, Wenxiang; Zhou, Yang; Wang, Xiaoyue; Huang, Han; Li, Zhaolei | |
通讯作者 | Wu, WX (通讯作者) |
发表日期 | 2020 |
EISSN | 2073-4441 |
卷号 | 12期号:8 |
英文摘要 | Drought disasters jeopardize the production of vegetation and are expected to exert impacts on human well-being in the context of global climate change. However, spatiotemporal variations in drought characteristics (including the drought duration, intensity, and frequency), specifically for vegetation areas within a growing season, remain largely unknown. Here, we first constructed a normalized difference vegetation index to estimate the length of the growing season for each pixel (8 km) by four widely used phenology estimation methods; second, we analyzed the temporal and spatial patterns of climate factors and drought characteristics (in terms of the Standardized Precipitation Evapotranspiration Index (SPEI)), within a growing season over vegetation areas of the northern hemisphere before and after the critical time point of 1998, which was marked by the onset of a global warming hiatus. Finally, we extracted the highly drought-vulnerable areas of vegetation by examining the sensitivity of the gross primary production to the SPEI to explore the underlying effects of drought variation on vegetation. The results revealed, first, that significant (p< 0.05) increases in precipitation, temperature, and the SPEI (a wetting trend) occurred from 1982 to 2015. The growing season temperature increased even more statistically significant after 1998 than before. Second, the duration and frequency of droughts changed abruptly and decreased considerably from 1998 to 2015; and this wetting trend was located mainly in high-latitude areas. Third, at the biome level, the wetting areas occurred mainly in the tundra, boreal forest or taiga, and temperate coniferous forest biomes, whereas the highly drought-vulnerable areas were mainly located in the desert and xeric shrubland (43.5%) biomes. Our results highlight the fact that although the drought events within a growing season decreased significantly in the northern hemisphere from 1998 to 2015, the very existence of a mismatch between a reduction in drought areas and an increase in highly drought-vulnerable areas makes the impact of drought on vegetation nonnegligible. This work provides valuable information for designing coping measures to reduce the vegetative drought risk in the Northern Hemisphere. |
关键词 | WARMING HIATUSINTENSE PRECIPITATIONCLIMATEEVAPORATIONCHINAVARIABILITYPACIFICTRENDS |
英文关键词 | vegetation; growing season; Standardized Precipitation Evapotranspiration Index; drought characteristics; vulnerability |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
WOS类目 | Environmental Sciences ; Water Resources |
WOS记录号 | WOS:000564868000001 |
来源期刊 | WATER |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/259869 |
推荐引用方式 GB/T 7714 | Zeng, Zhaoqi,Li, Yamei,Wu, Wenxiang,et al. Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982-2015)[J]. 中国科学院青藏高原研究所,2020,12(8). |
APA | Zeng, Zhaoqi.,Li, Yamei.,Wu, Wenxiang.,Zhou, Yang.,Wang, Xiaoyue.,...&Li, Zhaolei.(2020).Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982-2015).WATER,12(8). |
MLA | Zeng, Zhaoqi,et al."Spatio-Temporal Variation of Drought within the Vegetation Growing Season in North Hemisphere (1982-2015)".WATER 12.8(2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。