CCPortal
DOI10.3390/ijgi9070450
LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas
Ye, Zhen; Xu, Yusheng; Huang, Rong; Tong, Xiaohua; Li, Xin; Liu, Xiangfeng; Luan, Kuifeng; Hoegner, Ludwig; Stilla, Uwe
通讯作者Xu, YS (通讯作者)
发表日期2020
EISSN2220-9964
卷号9期号:7
英文摘要The semantic labeling of the urban area is an essential but challenging task for a wide variety of applications such as mapping, navigation, and monitoring. The rapid advance in Light Detection and Ranging (LiDAR) systems provides this task with a possible solution using 3D point clouds, which are accessible, affordable, accurate, and applicable. Among all types of platforms, the airborne platform with LiDAR can serve as an efficient and effective tool for large-scale 3D mapping in the urban area. Against this background, a large number of algorithms and methods have been developed to fully explore the potential of 3D point clouds. However, the creation of publicly accessible large-scale annotated datasets, which are critical for assessing the performance of the developed algorithms and methods, is still at an early age. In this work, we present a large-scale aerial LiDAR point cloud dataset acquired in a highly-dense and complex urban area for the evaluation of semantic labeling methods. This dataset covers an urban area with highly-dense buildings of approximately 1 km(2)and includes more than three million points with five classes of objects labeled. Moreover, experiments are carried out with the results from several baseline methods, demonstrating the feasibility and capability of the dataset serving as a benchmark for assessing semantic labeling methods.
关键词ALS POINT CLOUDSCONTEXTUAL CLASSIFICATIONSEGMENTATIONREGISTRATION
英文关键词ALS point clouds; semantic labeling; highly-dense urban area; benchmark dataset
语种英语
WOS研究方向Computer Science ; Physical Geography ; Remote Sensing
WOS类目Computer Science, Information Systems ; Geography, Physical ; Remote Sensing
WOS记录号WOS:000557679700001
来源期刊ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259837
推荐引用方式
GB/T 7714
Ye, Zhen,Xu, Yusheng,Huang, Rong,et al. LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas[J]. 中国科学院青藏高原研究所,2020,9(7).
APA Ye, Zhen.,Xu, Yusheng.,Huang, Rong.,Tong, Xiaohua.,Li, Xin.,...&Stilla, Uwe.(2020).LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas.ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,9(7).
MLA Ye, Zhen,et al."LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas".ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 9.7(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ye, Zhen]的文章
[Xu, Yusheng]的文章
[Huang, Rong]的文章
百度学术
百度学术中相似的文章
[Ye, Zhen]的文章
[Xu, Yusheng]的文章
[Huang, Rong]的文章
必应学术
必应学术中相似的文章
[Ye, Zhen]的文章
[Xu, Yusheng]的文章
[Huang, Rong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。