Climate Change Data Portal
DOI | 10.3390/ijgi9040210 |
Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series | |
Wu, Xiaojing; Zheng, Donghai | |
通讯作者 | Wu, XJ (通讯作者) |
发表日期 | 2020 |
EISSN | 2220-9964 |
卷号 | 9期号:4 |
英文摘要 | Unprecedented amounts of spatio-temporal data instigates an urgent need for patterns exploration in it. Clustering analysis is useful in extracting patterns from big data by grouping similar data elements into clusters. Compared with one-way clustering and co-clustering methods, tri-clustering methods are more capable of exploring complex patterns. However, the explored patterns or clusters could be different due to varying temporal resolutions of input data. This study presents a tri-clustering based method to explore the impacts of different temporal resolutions on spatio-temporal clusters identified in geo-referenced time series (GTS), one type of spatio-temporal data. Dutch daily temperature data at 28 stations over 20 years was used to illustrate this study. The temperature data at daily, monthly, and yearly resolutions were subjected to the Bregman cube average tri-clustering algorithm with I-divergence (BCAT I) to detect spatio-temporal clusters, which were then compared in terms of patterns exhibited, compositions, and changed elements. Results confirm the temporal resolution impacts on the spatio-temporal clusters identified in the Dutch temperature data: most compositions of clusters are varying when changing the temporal resolutions of input data in the GTS. Nevertheless, there is almost no change of elements in certain clusters (12 stations in the northeast of the country; years 1996, 2010) at all temporal resolutions, suggesting them as the true clusters in the case study dataset. |
关键词 | TRENDSPRECIPITATIONDISCOVERYPATTERNS |
英文关键词 | tri-clustering; spatio-temporal clusters; geo-referenced time series; Modifiable Temporal Unit Problem (MTUP); Dutch temperature |
语种 | 英语 |
WOS研究方向 | Computer Science ; Physical Geography ; Remote Sensing |
WOS类目 | Computer Science, Information Systems ; Geography, Physical ; Remote Sensing |
WOS记录号 | WOS:000539535700025 |
来源期刊 | ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/259734 |
推荐引用方式 GB/T 7714 | Wu, Xiaojing,Zheng, Donghai. Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series[J]. 中国科学院青藏高原研究所,2020,9(4). |
APA | Wu, Xiaojing,&Zheng, Donghai.(2020).Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series.ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION,9(4). |
MLA | Wu, Xiaojing,et al."Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series".ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 9.4(2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Xiaojing]的文章 |
[Zheng, Donghai]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Xiaojing]的文章 |
[Zheng, Donghai]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Xiaojing]的文章 |
[Zheng, Donghai]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。