Climate Change Data Portal
DOI | 10.3389/fmicb.2019.00243 |
Methods to Investigate the Global Atmospheric Microbiome | |
Dommergue, Aurelien; Amato, Pierre; Tignat-Perrier, Romie; Magand, Olivier; Thollot, Alban; Joly, Muriel; Bouvier, Laetitia; Sellegri, Karine; Vogel, Timothy; Sonke, Jeroen E.; Jaffrezo, Jean-Luc; Andrade, Marcos; Moreno, Isabel; Labuschagnea, Casper; Martina, Lynwill; Zhang, Qianggong; Larose, Catherine | |
通讯作者 | Larose, C (通讯作者) |
发表日期 | 2019 |
ISSN | 1664-302X |
卷号 | 10 |
英文摘要 | The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, -omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality. |
关键词 | BIOLOGICAL AEROSOL-PARTICLESGASEOUS ELEMENTAL MERCURYSOURCE APPORTIONMENTSIZE DISTRIBUTIONBACTERIAVARIABILITYURBANTROPOSPHERETRANSPORTSITE |
英文关键词 | atmosphere; microorganisms biodiversity; aerobiology; biogeography; protocols; methods; aerosols |
语种 | 英语 |
WOS研究方向 | Microbiology |
WOS类目 | Microbiology |
WOS记录号 | WOS:000459260400001 |
来源期刊 | FRONTIERS IN MICROBIOLOGY
![]() |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/259654 |
推荐引用方式 GB/T 7714 | Dommergue, Aurelien,Amato, Pierre,Tignat-Perrier, Romie,et al. Methods to Investigate the Global Atmospheric Microbiome[J]. 中国科学院青藏高原研究所,2019,10. |
APA | Dommergue, Aurelien.,Amato, Pierre.,Tignat-Perrier, Romie.,Magand, Olivier.,Thollot, Alban.,...&Larose, Catherine.(2019).Methods to Investigate the Global Atmospheric Microbiome.FRONTIERS IN MICROBIOLOGY,10. |
MLA | Dommergue, Aurelien,et al."Methods to Investigate the Global Atmospheric Microbiome".FRONTIERS IN MICROBIOLOGY 10(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。