CCPortal
DOI10.1016/j.agrformet.2019.107633
Optimization of a remote sensing energy balance method over different canopy applied at global scale
Chen, Xuelong; Su, Zhongbo; Ma, Yaoming; Middleton, Elizabeth M.
通讯作者Chen, XL (通讯作者)
发表日期2019
ISSN0168-1923
EISSN1873-2240
卷号279
英文摘要Parameterization methods which calculate turbulent heat and water fluxes with thermal remote sensing data were evaluated in the revised remote sensing surface energy balance system (SEBS) model (Chen et al., 2013). The model calculates sensible heat (H) based on the Monin-Obukhov similarity theory (MOST) and determines latent heat (LE) as the residual of energy balance. We examined the uncertainties of H and LE in the SEBS model due to five key parameters at the local station point scale. Observations at 27 flux towers located in seven land cover types (needle-leaf forest, broadleaf forest, shrub, savanna, grassland, cropland, and sparsely vegetated land) and an artificial intelligence particle swarm optimization (PSO) algorithm was combined to calibrate the five parameters (leaf drag coefficient, leaf heat transfer coefficients, roughness length for soil, and two parameters for ground heat calculation) in the SEBS model. The root-mean-square error at the site scale was reduced by 9Wm(-2) for H, and 92Wm(-2) for LE, and their correlation coefficients were increased by 0.07 (H) and 0.11 (LE) after using the calibrated parameters. The updated model validation was further conducted globally for the remotely sensed evapotranspiration (ET) calculations. Overestimation of SEBS global ET was significantly improved by using the optimized values of the parameters. The results suggested PSO was able to consistently locate the global optimum of the SEBS model, and appears to be capable of solving the ET model optimization problem.
关键词PARTICLE SWARM OPTIMIZATIONSYSTEM SEBSMOMENTUM-TRANSFEREVAPOTRANSPIRATIONMODELFLUXEVAPORATIONLANDROUGHNESSALGORITHM
英文关键词Remote sensing energy balance; Parameter optimization; Surface energy balance system; Heat roughness length; Fluxnetwork; Particle swarm optimization
语种英语
WOS研究方向Agriculture ; Forestry ; Meteorology & Atmospheric Sciences
WOS类目Agronomy ; Forestry ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000500197400049
来源期刊AGRICULTURAL AND FOREST METEOROLOGY
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259618
推荐引用方式
GB/T 7714
Chen, Xuelong,Su, Zhongbo,Ma, Yaoming,et al. Optimization of a remote sensing energy balance method over different canopy applied at global scale[J]. 中国科学院青藏高原研究所,2019,279.
APA Chen, Xuelong,Su, Zhongbo,Ma, Yaoming,&Middleton, Elizabeth M..(2019).Optimization of a remote sensing energy balance method over different canopy applied at global scale.AGRICULTURAL AND FOREST METEOROLOGY,279.
MLA Chen, Xuelong,et al."Optimization of a remote sensing energy balance method over different canopy applied at global scale".AGRICULTURAL AND FOREST METEOROLOGY 279(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xuelong]的文章
[Su, Zhongbo]的文章
[Ma, Yaoming]的文章
百度学术
百度学术中相似的文章
[Chen, Xuelong]的文章
[Su, Zhongbo]的文章
[Ma, Yaoming]的文章
必应学术
必应学术中相似的文章
[Chen, Xuelong]的文章
[Su, Zhongbo]的文章
[Ma, Yaoming]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。