CCPortal
DOI10.1016/j.rser.2019.109327
A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data
Jiang, Hou; Lu, Ning; Qin, Jun; Tang, Wenjun; Yao, Ling
通讯作者Lu, N (通讯作者)
发表日期2019
ISSN1364-0321
EISSN1879-0690
卷号114
英文摘要To apply deep learning technique for estimating hourly global solar radiation (GSR) from geostationary satellite observations, a hybrid deep network is proposed, relying on convolutional neural network (CNN) to extract spatial pattern from satellite imagery, multi-layer perceptron (MLP) to link the abstract patterns and additional time/location information to target hourly GSR. Its representative advantage lies in the ability to characterize changeable cloud morphology and simulate complex non-linear relationships. The deep network is trained using ground measured GSR values at 90 Chinese radiation stations in 2008 as well as the radiative transfer model simulation at the top of Mt. Everest which serves as constraints of extrapolation for high elevation regions. The extensibility of trained network is validated at 5 independent stations in 2008, yielding an overall coefficient of determination (R-2) of 0.82, and at all stations in 2007 along with an R-2 of 0.88. Comparative experiments confirm that the combination of spatial pattern and point information can lead to more accurate estimation of hourly GSR, achieving a minimum root mean square error (RMSE) of 84.18 W/m(2) (0.30 MJ/m(2)), 1.92 MJ/m(2) and 1.08 MJ/m(2) in hourly, daily total and monthly total scales, respectively. Moreover, the deep network is capable of mapping spatially continuous hourly GSR which reflects the regional differences and reproduce the diurnal cycles of solar radiation properly.
关键词ARTIFICIAL NEURAL-NETWORKINTELLIGENCE TECHNIQUESIRRADIANCEENERGYMODELPREDICTION
英文关键词Global solar radiation; Convolutional neural network; Deep learning; Geostationary satellite; Temporal and spatial variations
语种英语
WOS研究方向Science & Technology - Other Topics ; Energy & Fuels
WOS类目Green & Sustainable Science & Technology ; Energy & Fuels
WOS记录号WOS:000488871200004
来源期刊RENEWABLE & SUSTAINABLE ENERGY REVIEWS
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259489
推荐引用方式
GB/T 7714
Jiang, Hou,Lu, Ning,Qin, Jun,et al. A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data[J]. 中国科学院青藏高原研究所,2019,114.
APA Jiang, Hou,Lu, Ning,Qin, Jun,Tang, Wenjun,&Yao, Ling.(2019).A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data.RENEWABLE & SUSTAINABLE ENERGY REVIEWS,114.
MLA Jiang, Hou,et al."A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data".RENEWABLE & SUSTAINABLE ENERGY REVIEWS 114(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiang, Hou]的文章
[Lu, Ning]的文章
[Qin, Jun]的文章
百度学术
百度学术中相似的文章
[Jiang, Hou]的文章
[Lu, Ning]的文章
[Qin, Jun]的文章
必应学术
必应学术中相似的文章
[Jiang, Hou]的文章
[Lu, Ning]的文章
[Qin, Jun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。