CCPortal
DOI10.5194/gmd-12-4661-2019
GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses
Cao, Bin; Quan, Xiaojing; Brown, Nicholas; Stewart-Jones, Emilie; Gruber, Stephan
通讯作者Gruber, S (通讯作者)
发表日期2019
ISSN1991-959X
EISSN1991-9603
起始页码4661
结束页码4679
卷号12期号:11
英文摘要Simulations of land-surface processes and phenomena often require driving time series of meteorological variables. Corresponding observations, however, are unavailable in most locations, even more so, when considering the duration, continuity and data quality required. Atmospheric reanalyses provide global coverage of relevant meteorological variables, but their use is largely restricted to grid-based studies. This is because technical challenges limit the ease with which reanalysis data can be applied to models at the site scale. We present the software toolkit GlobSim, which automates the downloading, interpolation and scaling of different reanalyses - currently ERA5, ERA-Interim, JRA-55 and MERRA-2 - to produce meteorological time series for user-defined point locations. The resulting data have consistent structure and units to efficiently support ensemble simulation. The utility of GlobSim is demonstrated using an application in permafrost research. We perform ensemble simulations of ground-surface temperature for 10 terrain types in a remote tundra area in northern Canada and compare the results with observations. Simulation results reproduced seasonal cycles and variation between terrain types well, demonstrating that GlobSim can support efficient land-surface simulations. Ensemble means often yielded better accuracy than individual simulations and ensemble ranges additionally provide indications of uncertainty arising from uncertain input. By improving the usability of reanalyses for research requiring time series of climate variables for point locations, GlobSim can enable a wide range of simulation studies and model evaluations that previously were impeded by technical hurdles in obtaining suitable data.
关键词PERMAFROST RESEARCH SITELAND-SURFACEGROUND TEMPERATURESMODEL SIMULATIONSMACKENZIE DELTAACTIVE-LAYERCLIMATESNOWUNCERTAINTIESPRECIPITATION
语种英语
WOS研究方向Geology
WOS类目Geosciences, Multidisciplinary
WOS记录号WOS:000496540200002
来源期刊GEOSCIENTIFIC MODEL DEVELOPMENT
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259402
推荐引用方式
GB/T 7714
Cao, Bin,Quan, Xiaojing,Brown, Nicholas,et al. GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses[J]. 中国科学院青藏高原研究所,2019,12(11).
APA Cao, Bin,Quan, Xiaojing,Brown, Nicholas,Stewart-Jones, Emilie,&Gruber, Stephan.(2019).GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses.GEOSCIENTIFIC MODEL DEVELOPMENT,12(11).
MLA Cao, Bin,et al."GlobSim (v1.0): deriving meteorological time series for point locations from multiple global reanalyses".GEOSCIENTIFIC MODEL DEVELOPMENT 12.11(2019).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cao, Bin]的文章
[Quan, Xiaojing]的文章
[Brown, Nicholas]的文章
百度学术
百度学术中相似的文章
[Cao, Bin]的文章
[Quan, Xiaojing]的文章
[Brown, Nicholas]的文章
必应学术
必应学术中相似的文章
[Cao, Bin]的文章
[Quan, Xiaojing]的文章
[Brown, Nicholas]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。