CCPortal
DOI10.1007/s10584-017-1996-y
Prediction of future malaria hotspots under climate change in sub-Saharan Africa
Semakula, Henry Musoke; Song, Guobao; Achuu, Simon Peter; Shen, Miaogen; Chen, Jingwen; Mukwaya, Paul Isolo; Oulu, Martin; Mwendwa, Patrick Mwanzia; Abalo, Jannette; Zhang, Shushen
通讯作者Song, GB (通讯作者)
发表日期2017
ISSN0165-0009
EISSN1573-1480
起始页码415
结束页码428
卷号143期号:3-4
英文摘要Malaria is a climate sensitive disease that is causing rampant deaths in sub-Saharan Africa (SSA) and its impact is expected to worsen under climate change. Thus, pre-emptive policies for future malaria control require projections based on integrated models that can accommodate complex interactions of both climatic and non-climatic factors that define malaria landscape. In this paper, we combined Geographical Information System (GIS) and Bayesian belief networks (BBN) to generate GIS-BBN models that predicted malaria hotspots in 2030, 2050 and 2100 under representative concentration pathways (RCPs) 4.5 and 8.5. We used malaria data of children of SSA, gridded environmental and social-economic data together with projected climate data from the 21 Coupled Model Inter-comparison Project Phase 5 models to compile the GIS-BBN models. Our model on which projections were made has an accuracy of 80.65% to predict the high, medium, low and no malaria prevalence categories correctly. The non-spatial BBN model projection shows a moderate variation in malaria reduction for the high prevalence category among RCPs. Under the low prevalence category, an increase in malaria is seen but with little variation ranging between 4.6 and 5.6 percentage points. Spatially, under RCP 4.5, most parts of SSA will have medium malaria prevalence in 2030, while under RCP 8.5, most parts will have no malaria except in the highlands. Our BBN-GIS models show an overall shift of malaria hotspots from West Africa to the eastern and southern parts of Africa especially under RCP 8.5. RCP 8.5 will not expand the high and medium malaria prevalence categories in all the projection years. The generated probabilistic maps highlight future malaria hotspots under climate change on which pre-emptive policies can be based.
关键词PLASMODIUM-FALCIPARUMENVIRONMENTAL-MANAGEMENTBAYESIAN NETWORKSOURCE REDUCTIONRANGE SHIFTSTRANSMISSIONRISKELIMINATIONIMPACTUNCERTAINTY
英文关键词Bayesian belief networks; GIS; Children; Climate change; Malaria; Sub-Saharan Africa
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000407170600010
来源期刊CLIMATIC CHANGE
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/259090
推荐引用方式
GB/T 7714
Semakula, Henry Musoke,Song, Guobao,Achuu, Simon Peter,et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa[J]. 中国科学院青藏高原研究所,2017,143(3-4).
APA Semakula, Henry Musoke.,Song, Guobao.,Achuu, Simon Peter.,Shen, Miaogen.,Chen, Jingwen.,...&Zhang, Shushen.(2017).Prediction of future malaria hotspots under climate change in sub-Saharan Africa.CLIMATIC CHANGE,143(3-4).
MLA Semakula, Henry Musoke,et al."Prediction of future malaria hotspots under climate change in sub-Saharan Africa".CLIMATIC CHANGE 143.3-4(2017).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Semakula, Henry Musoke]的文章
[Song, Guobao]的文章
[Achuu, Simon Peter]的文章
百度学术
百度学术中相似的文章
[Semakula, Henry Musoke]的文章
[Song, Guobao]的文章
[Achuu, Simon Peter]的文章
必应学术
必应学术中相似的文章
[Semakula, Henry Musoke]的文章
[Song, Guobao]的文章
[Achuu, Simon Peter]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。