CCPortal
DOI10.5194/acp-16-2543-2016
Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data
Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei
通讯作者Tang, WJ (通讯作者)
发表日期2016
ISSN1680-7316
EISSN1680-7324
起始页码2543
结束页码2557
卷号16期号:4
英文摘要Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100Wm(-2) for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0Wm(-2) (or 3.5 %) and 98.5Wm(-2) (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8Wm(-2) (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2Wm(-2) (or 19.1 %) and 22.1Wm(-2) (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.
关键词PHOTOSYNTHETICALLY ACTIVE RADIATIONSHORTWAVE RADIATIONOPTICAL-PROPERTIESNEURAL-NETWORKSATELLITEIRRADIANCEALGORITHMPRODUCTSENERGYCHINA
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000372971500042
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/258684
推荐引用方式
GB/T 7714
Tang, Wenjun,Qin, Jun,Yang, Kun,et al. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data[J]. 中国科学院青藏高原研究所,2016,16(4).
APA Tang, Wenjun,Qin, Jun,Yang, Kun,Liu, Shaomin,Lu, Ning,&Niu, Xiaolei.(2016).Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data.ATMOSPHERIC CHEMISTRY AND PHYSICS,16(4).
MLA Tang, Wenjun,et al."Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data".ATMOSPHERIC CHEMISTRY AND PHYSICS 16.4(2016).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tang, Wenjun]的文章
[Qin, Jun]的文章
[Yang, Kun]的文章
百度学术
百度学术中相似的文章
[Tang, Wenjun]的文章
[Qin, Jun]的文章
[Yang, Kun]的文章
必应学术
必应学术中相似的文章
[Tang, Wenjun]的文章
[Qin, Jun]的文章
[Yang, Kun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。