Climate Change Data Portal
DOI | 10.5194/acp-16-2543-2016 |
Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data | |
Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei | |
通讯作者 | Tang, WJ (通讯作者) |
发表日期 | 2016 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 2543 |
结束页码 | 2557 |
卷号 | 16期号:4 |
英文摘要 | Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100Wm(-2) for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0Wm(-2) (or 3.5 %) and 98.5Wm(-2) (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8Wm(-2) (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2Wm(-2) (or 19.1 %) and 22.1Wm(-2) (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km. |
关键词 | PHOTOSYNTHETICALLY ACTIVE RADIATIONSHORTWAVE RADIATIONOPTICAL-PROPERTIESNEURAL-NETWORKSATELLITEIRRADIANCEALGORITHMPRODUCTSENERGYCHINA |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000372971500042 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/258684 |
推荐引用方式 GB/T 7714 | Tang, Wenjun,Qin, Jun,Yang, Kun,et al. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data[J]. 中国科学院青藏高原研究所,2016,16(4). |
APA | Tang, Wenjun,Qin, Jun,Yang, Kun,Liu, Shaomin,Lu, Ning,&Niu, Xiaolei.(2016).Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data.ATMOSPHERIC CHEMISTRY AND PHYSICS,16(4). |
MLA | Tang, Wenjun,et al."Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data".ATMOSPHERIC CHEMISTRY AND PHYSICS 16.4(2016). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。