Climate Change Data Portal
DOI | 10.1002/2015JG003006 |
Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications | |
Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef | |
通讯作者 | Zhang, YS (通讯作者) |
发表日期 | 2015 |
ISSN | 2169-8953 |
EISSN | 2169-8961 |
起始页码 | 1638 |
结束页码 | 1657 |
卷号 | 120期号:8 |
英文摘要 | Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the corresponding model. Overall, the Nonlinear-CR model is recommended in the absence of measured ETa for local calibration of the model parameter values. |
关键词 | PENMAN-MONTEITH EQUATIONRATIO ENERGY-BALANCECOMPLEMENTARY RELATIONSHIPWATER-BALANCEINTERANNUAL VARIABILITYEVAPO-TRANSPIRATIONCANOPY RESISTANCEPAN EVAPORATIONIRRIGATED CROPSSUMMER MONSOON |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Geology |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary |
WOS记录号 | WOS:000363332300013 |
来源期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
![]() |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/258587 |
推荐引用方式 GB/T 7714 | Ma, Ning,Zhang, Yinsheng,Xu, Chong-Yu,et al. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications[J]. 中国科学院青藏高原研究所,2015,120(8). |
APA | Ma, Ning,Zhang, Yinsheng,Xu, Chong-Yu,&Szilagyi, Jozsef.(2015).Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications.JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES,120(8). |
MLA | Ma, Ning,et al."Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications".JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES 120.8(2015). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。