Climate Change Data Portal
DOI | 10.1038/ismej.2013.146 |
The microbial gene diversity along an elevation gradient of the Tibetan grassland | |
Yang, Yunfeng; Gao, Ying; Wang, Shiping; Xu, Depeng; Yu, Hao; Wu, Linwei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; He, Zhili; Deng, Ye; Zhou, Jizhong | |
通讯作者 | Yang, YF (通讯作者) |
发表日期 | 2014 |
ISSN | 1751-7362 |
EISSN | 1751-7370 |
起始页码 | 430 |
结束页码 | 440 |
卷号 | 8期号:2 |
英文摘要 | Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4+-N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics. |
关键词 | ECOSYSTEM CO2 EXCHANGEGEOCHIP-BASED ANALYSISALPINE MEADOWBACTERIAL COMMUNITIESSOIL-MOISTUREPLATEAUSEAPATTERNSNITROGENDESERT |
英文关键词 | gene diversity; soil microbial community; community metabolism; alpine grassland; elevation gradient |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Microbiology |
WOS类目 | Ecology ; Microbiology |
WOS记录号 | WOS:000330386500016 |
来源期刊 | ISME JOURNAL |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/258397 |
推荐引用方式 GB/T 7714 | Yang, Yunfeng,Gao, Ying,Wang, Shiping,et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. 中国科学院青藏高原研究所,2014,8(2). |
APA | Yang, Yunfeng.,Gao, Ying.,Wang, Shiping.,Xu, Depeng.,Yu, Hao.,...&Zhou, Jizhong.(2014).The microbial gene diversity along an elevation gradient of the Tibetan grassland.ISME JOURNAL,8(2). |
MLA | Yang, Yunfeng,et al."The microbial gene diversity along an elevation gradient of the Tibetan grassland".ISME JOURNAL 8.2(2014). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。