CCPortal
DOI10.1190/1.3350861
Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts
Zhang, Jin-Hai; Wang, Wei-Min; Wang, Shu-Qin; Yao, Zhen-Xing
通讯作者Zhang, JH (通讯作者)
发表日期2010
ISSN0016-8033
EISSN1942-2156
起始页码S23
结束页码S34
卷号75期号:2
英文摘要A wide-angle propagator is essential when imaging complex media with strong lateral velocity contrasts in one-way wave-equation migration. We have developed a dual-domain one-way propagator using truncated Chebyshev polynomials and a globally optimized scheme. Our method increases the accuracy of the expanded square-root operator by adding two high-order terms to the traditional split-step Fourier propagator. First, we approximate the square-root operator using Taylor expansion around the reference background velocity. Then, we apply the first-kind Chebyshev polynomials to economize the results of the Taylor expansion. Finally, we optimize the constant coefficients using the globally optimized scheme, which are fixed and feasible for arbitrary velocity models. Theoretical analysis and nu-merical experiments have demonstrated that the method has veryhigh accuracy and exceeds the unoptimized Fourier finite-difference propagator for the entire range of practical velocity contrasts. The accurate propagation angle of the method is always about 60 degrees under the relative error of 1% for complex media with weak, moderate, and even strong lateral velocity contrasts. The method allows us to handle wide-angle propagations and strong lateral velocity contrast simultaneously by using Fourier transform alone. Only four 2D Fourier transforms are required for each step of 3D wavefield extrapolation, and the computing cost is similar to that of the Fourier finite-difference method. Compared with the finite-difference method, our method has no two-way splitting error (i.e., azimuthal-anisotropy error) for 3D cases and almost no numerical dispersion for coarse grids. In addition, it has strong potential to be accelerated when an enhanced fast Fourier transform algorithm emerges.
关键词FINITE-DIFFERENCE MIGRATIONELASTIC-WAVEEXTRAPOLATIONPROPAGATION
英文关键词Chebyshev approximation; Fourier analysis; seismic waves; seismology
语种英语
WOS研究方向Geochemistry & Geophysics
WOS类目Geochemistry & Geophysics
WOS记录号WOS:000276868100022
来源期刊GEOPHYSICS
来源机构中国科学院青藏高原研究所
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/257788
推荐引用方式
GB/T 7714
Zhang, Jin-Hai,Wang, Wei-Min,Wang, Shu-Qin,et al. Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts[J]. 中国科学院青藏高原研究所,2010,75(2).
APA Zhang, Jin-Hai,Wang, Wei-Min,Wang, Shu-Qin,&Yao, Zhen-Xing.(2010).Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts.GEOPHYSICS,75(2).
MLA Zhang, Jin-Hai,et al."Optimized Chebyshev Fourier migration: A wide-angle dual-domain method for media with strong velocity contrasts".GEOPHYSICS 75.2(2010).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jin-Hai]的文章
[Wang, Wei-Min]的文章
[Wang, Shu-Qin]的文章
百度学术
百度学术中相似的文章
[Zhang, Jin-Hai]的文章
[Wang, Wei-Min]的文章
[Wang, Shu-Qin]的文章
必应学术
必应学术中相似的文章
[Zhang, Jin-Hai]的文章
[Wang, Wei-Min]的文章
[Wang, Shu-Qin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。