CCPortal
DOI10.1007/s11869-021-00994-z
Mutation test and multiple-wavelet coherence of PM2.5 concentration in Guiyang, China
Li, Song; Liu, Nanjian; Tang, Linfeng; Zhang, Fengtai; Liu, Jinhuan; Liu, Jinke
通讯作者Liu, NJ (通讯作者),Guizhou Prov Key Lab Watershed Geog Condit, Guiyang 550018, Peoples R China. ; Liu, NJ (通讯作者),Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China. ; Liu, NJ (通讯作者),Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
发表日期2021
ISSN1873-9318
EISSN1873-9326
起始页码955
结束页码966
卷号14期号:7
英文摘要The negative effects of PM2.5 concentration in urban development are becoming more and more prominent. Bernaola-Galvan Segmentation Algorithm (BGSA) and wavelet analysis are powerful tools for processing non-linear and non-stationary signals. First, we use BGSA that reveals there are 41 mutation points in the PM2.5 concentration in Guiyang. Then, we reveal the multi-scale evolution of PM2.5 concentration in Guiyang by wavelet analysis. In the first part, we performed one-dimensional continuous wavelet transform (CWT) on the eight monitoring points in the study area, and the results showed that they have obviously similar multi-scale evolution characteristics, with a high-energy and significant oscillation period of 190-512 days. Next, the wavelet transform coherence (WTC) reveals the mutual relationship between the PM2.5 concentration and the atmospheric pollutants and meteorological factors. PM2.5 concentration variation is closely linked to that of PM10 concentration. But, it is not to be ignored that the increase in the SO2 and NO2 concentrations will cause the PM2.5 concentration to rise on different scales. Lastly, the variation of the PM2.5 concentration can be better explained by the combination of multiple factors (2-4) using the multiple-wavelet coherence (MWC). Under the combination of the two factors, the average temperature (Avgtem) and relative humidity (ReH) have the highest AWC and PASC. In the case of the combination of four factors, CO-Avgtem-Wind-ReH plays the largest role in determining PM2.5 concentration.
英文关键词Air quality; PM2 .(5); Environmental factors; BGSA; Multiple-wavelet coherence
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Sciences
WOS记录号WOS:000630642600001
来源期刊AIR QUALITY ATMOSPHERE AND HEALTH
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/255166
作者单位[Li, Song; Liu, Nanjian; Liu, Jinhuan] Guizhou Prov Key Lab Watershed Geog Condit, Guiyang 550018, Peoples R China; [Li, Song] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China; [Liu, Nanjian] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710061, Peoples R China; [Liu, Nanjian; Liu, Jinke] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Tang, Linfeng] Yunnan Normal Univ, Fac Geog, Kunming 650500, Yunnan, Peoples R China; [Zhang, Fengtai] Chongqing Univ Technol, Sch Management, Chongqing 400054, Peoples R China; [Liu, Jinke] Chinese Acad Sci, Northwest Inst Eco Environm & Resources, State Key Lab Cryospher Sci, Cryosphere Res Stn Qinghai Tibet Plateau, Lanzhou 730000, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Li, Song,Liu, Nanjian,Tang, Linfeng,et al. Mutation test and multiple-wavelet coherence of PM2.5 concentration in Guiyang, China[J]. 中国科学院西北生态环境资源研究院,2021,14(7).
APA Li, Song,Liu, Nanjian,Tang, Linfeng,Zhang, Fengtai,Liu, Jinhuan,&Liu, Jinke.(2021).Mutation test and multiple-wavelet coherence of PM2.5 concentration in Guiyang, China.AIR QUALITY ATMOSPHERE AND HEALTH,14(7).
MLA Li, Song,et al."Mutation test and multiple-wavelet coherence of PM2.5 concentration in Guiyang, China".AIR QUALITY ATMOSPHERE AND HEALTH 14.7(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Song]的文章
[Liu, Nanjian]的文章
[Tang, Linfeng]的文章
百度学术
百度学术中相似的文章
[Li, Song]的文章
[Liu, Nanjian]的文章
[Tang, Linfeng]的文章
必应学术
必应学术中相似的文章
[Li, Song]的文章
[Liu, Nanjian]的文章
[Tang, Linfeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。