Climate Change Data Portal
DOI | 10.1007/s11430-020-9800-3 |
Terrestrial carbon cycle model-data fusion: Progress and challenges | |
Li, Xin; Ma, Hanqing; Ran, Youhua; Wang, Xufeng; Zhu, Gaofeng; Liu, Feng; He, Honglin; Zhang, Zhen; Huang, Chunlin | |
通讯作者 | Li, X (通讯作者),Chinese Acad Sci, State Key Lab Tibetan Plateau Earth Syst Resource, Natl Tibetan Plateau Sci Data Ctr, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China. ; Li, X (通讯作者),Chinese Acad Sci, Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China. |
发表日期 | 2021 |
ISSN | 1674-7313 |
EISSN | 1869-1897 |
起始页码 | 1645 |
结束页码 | 1657 |
卷号 | 64期号:10 |
英文摘要 | The terrestrial carbon cycle is an important component of global biogeochemical cycling and is closely related to human well-being and sustainable development. However, large uncertainties exist in carbon cycle simulations and observations. Model-data fusion is a powerful technique that combines models and observational data to minimize the uncertainties in terrestrial carbon cycle estimation. In this paper, we comprehensively overview the sources and characteristics of the uncertainties in terrestrial carbon cycle models and observations. We present the mathematical principles of two model-data fusion methods, i.e., data assimilation and parameter estimation, both of which essentially achieve the optimal fusion of a model with observational data while considering the respective errors in the model and in the observations. Based upon reviewing the progress in carbon cycle models and observation techniques in recent years, we have highlighted the major challenges in terrestrial carbon cycle model-data fusion research, such as the equifinality of models, the identifiability of model parameters, the estimation of representativeness errors in surface fluxes and remote sensing observations, the potential role of the posterior probability distribution of parameters obtained from sensitivity analysis in determining the error covariance matrixes of the models, and opportunities that emerge by assimilating new remote sensing observations, such as solar-induced chlorophyll fluorescence. It is also noted that the synthesis of multisource observations into a coherent carbon data assimilation system is by no means an easy task, yet a breakthrough in this bottleneck is a prerequisite for the development of a new generation of global carbon data assimilation systems. This article also highlights the importance of carbon cycle data assimilation systems to generate reliable and physically consistent terrestrial carbon cycle reanalysis data products with high spatial resolution and long-term time series. These products are critical to the accurate estimation of carbon cycles at the global and regional scales and will help future carbon management strategies meet the goals of carbon neutrality. |
关键词 | DATA-ASSIMILATION SYSTEMGLOBAL VEGETATION MODELSLAND-SURFACE MODELECOSYSTEM MODELSENSITIVITY-ANALYSISLEAF SCALEUNCERTAINTYPRODUCTIVITYPERSPECTIVEPARAMETERS |
英文关键词 | Carbon cycle; Model-data fusion; Data assimilation; Parameter estimation; Remote sensing; Uncertainty |
语种 | 英语 |
WOS研究方向 | Geology |
WOS类目 | Geosciences, Multidisciplinary |
WOS记录号 | WOS:000682649500002 |
来源期刊 | SCIENCE CHINA-EARTH SCIENCES |
来源机构 | 中国科学院西北生态环境资源研究院 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/255163 |
作者单位 | [Li, Xin] Chinese Acad Sci, State Key Lab Tibetan Plateau Earth Syst Resource, Natl Tibetan Plateau Sci Data Ctr, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China; [Li, Xin] Chinese Acad Sci, Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China; [Ma, Hanqing; Ran, Youhua; Wang, Xufeng; Liu, Feng; Zhang, Zhen; Huang, Chunlin] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China; [Zhu, Gaofeng] Lanzhou Univ, Coll Resources & Environm, Lanzhou 730000, Peoples R China; [He, Honglin] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xin,Ma, Hanqing,Ran, Youhua,et al. Terrestrial carbon cycle model-data fusion: Progress and challenges[J]. 中国科学院西北生态环境资源研究院,2021,64(10). |
APA | Li, Xin.,Ma, Hanqing.,Ran, Youhua.,Wang, Xufeng.,Zhu, Gaofeng.,...&Huang, Chunlin.(2021).Terrestrial carbon cycle model-data fusion: Progress and challenges.SCIENCE CHINA-EARTH SCIENCES,64(10). |
MLA | Li, Xin,et al."Terrestrial carbon cycle model-data fusion: Progress and challenges".SCIENCE CHINA-EARTH SCIENCES 64.10(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。